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1 Introduction

The UK Government has appointed Professor M. Cave to lead a review of compe-

tition and innovation in water markets in order to propose changes to the current

legislative and regulatory frameworks. The final objective of the Cave review is to

“deliver benefits to both business and household customers and increase the efficiency

of water use” in this sector.1 The first section of the Cave review deals with the

way to improve competition in water and sewerage industries, which are regulated

by the Water Service Regulation Authority (Ofwat).

In privatizing the Regional Water Authorities of England and Wales in November

1989, the government faced the classic regulatory problem: how to prevent the

management of privately owned natural monopolies exploiting their market power,

through higher prices and reduced quality, in the long run. The solution was inno-

vative. An independent regulator was created, Ofwat, who has the power to limit

price rises with a price cap, used in conjunction with a system of comparative or

∗L’auteur remercie Stéphane Saussier, Eshien Chong et Miguel Amaral pour leurs conseils et
commentaires ainsi que les membres de la Chaire EPPP (Economies des Partenariats Publics-Privés
de l’IAE - Paris 1. L’auteur est seul responsable pour toute erreur ou omission.

†e-mail: audelelannier@yahoo.fr
1See the Cave review of competition and innovation in water markets: a call for evidence [2008].

1



yardstick regulation.

As noted by Sawkins [1995], yardstick competition had clearly a place in the 1989

regulatory settlement and the Director General of Water Services, Ian Byatt, con-

firmed the advantages of this mechanism.2 This approach has the potential of break-

ing the direct link between the regulated firm’s costs and revenues, by linking the

firm’s costs to those of comparator(s). Once prices are set, if firms manage to deliver

service at a lower average cost than that assumed by the regulator, they keep the re-

sulting benefits. The regulator can thus provide firms with the incentive to increase

their efficiency and then return part of the realized cost savings to the customers

through a subsequent reduction in prices. Then, high-powered incentives similar to

those of a competitive market should be created (see Shleifer [1985]). Provided that

a regulator could identify at least one comparator, this benchmarking or yardstick

competition became a tool to overcome the information asymmetry which is inher-

ent in regulation.

Today, yardstick competition is widely used by regulators worldwide and has led to

various forms of modeling comparative efficiency. However, concerning the incentive

regulation used by Ofwat, the Cave review notes that“a number of stakeholders have

suggested that the incentives in the regime may not fully support the demands of con-

sumers, or the environment; and encourage innovation.”The Cave review raises the

question whether the comparative competition could be reformed to better deliver

the needs of consumers and the environment without further actual competition.

More precisely, the question, in a regulatory context, is to challenge benchmarking

methods and specifications of regulated inputs and outputs currently used by Ofwat

and to determine whether the regulator should make more use of comparisons be-

tween companies’ performance.

Shleifer [1985] recognized that some conditions should be met for benchmarking to

be efficient and reliable. First, regulators would need to protect against the dangers

of “collusive manipulation” by the regulated firms. Second, there would have to be

2“I [Byatt] shall compare the performance of the 39 appointed companies and use the examples
of the best to set standards for the others to introduce an element of comparative competition. Such
comparisons will cover differences in operating cost, capital cost, levels of service and customer
care. There will be allowances for differences such as geographical conditions which are outside
the control of efficient managements. These comparisons will help me achieve a better deal for all
water customers in England and Wales.”
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a shadow firm (i.e. a comparator) that has cost structures similar to that of the

regulated firm’s. If cost structures were heterogeneous then the results might be

unreliable. Finally, the regulator should be able to commit to disregarding firms’

complaints and would, in extremes, have to be prepared to let inefficient compa-

nies go bankrupt.3 To overcome the lack of a perfect shadow firm, Shleifer [1985]

noted that multivariate regression models should be developed, which account for

differences between firms costs that are outside firm’s control, such as network and

customer density for instance.

The use of four main empirical methodologies has emerged over time to imple-

ment a benchmarking of firm’s performances: (1) stochastic analysis of cost and

production functions, involving OLS (Ordinary Least Squares), COLS (Corrected

Ordinary Least Squares) and, more recently, SFA (Stochastic Frontier Analysis); (2)

mathematical modeling, using DEA techniques (Data Envelopment Analysis); (3)

productivity and unit cost indices (total factor productivity measures and descrip-

tive statistics); and (4) engineering-based models (see Coelli et al. [1998, 2003]).

The advantages of benchmarking have been extensively highlighted in the litera-

ture, even if there is no consensus on the best method to use. For instance Berg

and Lin [2007], Corton and Berg [2009], Botasso and Conti [2003] and Cubbin and

Tzanidakis [1998] compare different benchmarking methods and find either that the

methods yield similar rankings or underline that firms’ efficiency analysis is actually

sensible to the empirical methodology employed and to the variables included into

the benchmarking process.

However, in yardstick competition applications, the regulator is often interested

in obtaining a measure of firms’ efficiency in order to reward (or punish) compa-

nies accordingly. Hence, there is a close link between efficiency measurements and

incentive-based price regulation. If different benchmarking specifications lead to

significantly different rankings, this may create tensions and disputes between the

regulator and the regulated companies. Indeed, the companies may attempt to take

advantage from the incompleteness of the method used, by trying to renege on the in-

centive scheme implemented by the regulator, thus creating enforcement difficulties

of yardstick mechanisms. Berg and Lin [2007] note that “the regulatory commission

reviews studies and establishes performance incentives to achieve policy objectives.

3But as noted by Bös [1991], yardstick competition can be criticized precisely because the threat
of bankruptcy may not be credible where firms supply essential services.
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Without confidence in the scores and relative rankings, those responsible for creating

incentives will not risk their credibility by instituting rewards or applying penalties.

Regulators will be unwilling to apply incentives based on performance unless they

are very confident that the rankings can survive challenges.” Sage [1999] analyzes

the implementation of benchmarking by Ofwat and argues that the incompleteness

of the method is regularly subject to claims from companies who feel disadvantaged

by the variables included in the model and by the non-inclusion of an “essential

element of their specific situation”. Similarly, Sawkins [1995] explains, in the case

of the benchmarking performed by Ofwat, that the regulated companies often chal-

lenge the results provided by the regulator.4 In the same way, Dassler et al. [2006]

underline the difficulties encountered by Ofwat when applying its benchmarking:

“But even here its use has been controversial with the regulated companies question-

ing both the models used and their results.” These enforcement difficulties also occur

in other activity sectors, like the gas and electricity sectors, as well as the hospital

sector, that are regulated by benchmarking and yardstick competition. For instance,

Burns et al. [2006] show that Ofgem (the English energy regulator) has encountered

difficulties in implementing its benchmarking methods in the context of a yardstick

regulation. They show that it is due to a lack of credibility of the benchmarking

method used, and more generally to the credibility of the regulatory body. Simi-

larly, Hesseling and Sari [2006], members of the Netherlands Competition Authority

(NMa) note that “The main formal accountability of DTe5 is to the Dutch courts.

If a stakeholder does not agree with a decision of DTe, he can take recourse to the

specialized court (CBB). Over the past few years, this has proven a very popular

tool for both energy companies and end users’ organizations. On average, DTe has

won about half of these cases.”“In the first regulatory period, DTe applied an input-

oriented DEA-based benchmark [. . . ]. However, the system was defeated in court.”.

Moreover, in the American hospital sector, the CPB Netherlands Bureau for Eco-

nomic Policy Analysis [2000] underlines that renegotiation often occurs concerning

the benchmark definition.6

4“While both sides [Ofwat and the UK water utilities] admitted that the technical issue of ac-
counting for company heterogeneity had not been completely resolved, companies were more unhappy
than the Regulator with the current means of comparison. And while some of this may be quite
justifiable, the research did not reveal the extent to which these arguments were part of the process
of strategic manipulation: whether or not this was a conscious or unconscious decision by those
interviewed.”

5DTe is the Dutch regulatory authority for electricity and gas sectors.
6“A costly element is the recurrent renegotiation [. . . ]. Pooling hospitals with higher than average

costs may lobby for such renegotiation.”

4



Regulators can use a number of alternative methodologies and data for compar-

ing firms’ efficiency, but these approaches need to be robust to be accepted by

stakeholders. Indeed, the reliability of efficiency scores is crucial for an effective

implementation of yardstick competition. However, it is well known, as showing

in empirical studies, that the various benchmarking methods (generally parametric

vs non-parametric approaches) often produce different results with respect to firms’

efficiency scores and rankings. A possible explanation of this lack of robustness prob-

lem could relate to the difficulty of benchmarking methods in finding a consensus

on which explanatory variables should be taken into account, how heterogeneity in

environmental and network characteristics across companies can be controlled and

how quality indicators should be included in the models. This lack of robustness

is particularly undesirable if the results are to be used in economic policy-making.

As argued by Berg and Lin [2007], “If the criterion of consistency is not met, these

groups [the stakeholders] cannot be confident that the relative performance indica-

tors are meaningful. However, when alternative methodologies yield broadly similar

rankings, stakeholders are less likely to engage in acrimonious high-stakes disputes.”

In this paper, we wonder how the recurrent firms-led renegotiations (i.e. enforcement

difficulties) of yardstick competition and benchmarking methods can be explained.

Since water distribution utilities operate in different regions with different environ-

mental and network characteristics, it is essential to be able to distinguish between

inefficiency and data noises. Therefore, Stochastic Frontier Analysis (SFA) method

is used to study relative performances of the UK water distribution utilities. Indeed,

the main strength of the stochastic frontier approach is that it deals with stochastic

noise. The need for imposing an explicit functional form for the underlying technol-

ogy and an explicit distributional assumption for the inefficiency term is the main

weakness of the stochastic frontier. To limit this weakness, different specifications

of stochastic cost functions are tested, in order to check the consistency of rank-

ings provided by this method. The dataset consists of an unbalanced panel of 22

company observations on operating costs (explained variable), input prices (price

of labor and other variable inputs), physical outputs (volume of water delivered

and number of properties connected), environmental variables (population density,

water losses, proportion of water delivered to non-households) and quality indica-

tors (measuring the drinking water quality, the service quality and the “technical”

performance of companies), observed over the period 2002-2008. Ofwat has been
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using benchmarking mechanisms and yardstick competition for several years. It’s

an experimented and well informed regulator (a lot of data are available). In that

sense, UK water and sewerage regulation is often considered as a model of bench-

marking implementation. However, as noted before, both the UK government and

the regulated companies are now challenging the Ofwat regulation. As far I know,

this study is the first to test different specifications of SFA method in the UK water

and sewerage industry. This empirical strategy aims to evaluate the consistency of

UK water utility performance rankings. In this context, we wonder whether the en-

forcement difficulties of benchmarking schemes could be due to a lack of information

for the regulator or these problems are inherent to the benchmarking tools used by

regulators.

The results first indicate that environmental and quality variables should not be ig-

nored when evaluating water utilities performances. Environmental variables should

be included directly into the cost function as regressors to control for (observable)

heterogeneity between companies7, whereas some quality variables provide an ade-

quate explanation of technical efficiency and should be included in the inefficiency

component.

Second, the study shows that there are some potential difficulties with this approach

of evaluating performances. Indeed, performances results and rankings are signifi-

cantly different, depending on the data retained for the evaluation made by a SFA

mechanism. More precisely, the rankings significantly diverge according to the way

to include environmental and quality variables into the benchmarking model. The

higher consistency in rankings is obtained when physical outputs and environmental

variables are directly included as regressors and no quality indicator is taken into

account. In this case, 86.36% of the results enable to obtain differences lower than

5 ranks. When introducing quality variables as additional outputs, the models fail

to determine a same best and worse performing company. However, the correlation

between rankings is still very high and 72.73% of the results enable to limit the

differences in rankings (differences lower than 5 ranks) and there is no case where

a firm has a difference of ranks higher than 10. Moreover, the results demonstrate

that some quality variables should be included in the inefficiency component for the

7By introducing environmental and exogenous factors in the model, one can control for observed
heterogeneity. However, as argued by Greene [2005a,2005b] and Filippini et al. [2008], not all
relevant data are always available and some factors may even be too complex to be properly
measurable. This could result in unobserved heterogeneity which is beyond the firms’ control but
may affect their costs significantly.
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model specification to be reliable. However, in this case, the correlation between

rankings becomes very low and in 13.64% of the cases, differences in rankings are

higher than 10.

Note that this study does not aim to make an exhaustive analysis of water industry

performance. Hence, the example developed in this paper should be taken to be an

illustration of the incompleteness of the benchmarking methods, even in an “ideal”

case where a lot of data are available (i.e. the case of UK water and sewerage util-

ities regulation). Therefore, the lack of consistency, and indirectly the enforcement

difficulties, don’t seem to be due to a lack of information for the regulator. On

the contrary, the results indicate that, when adding more variables into the SFA

specification (more precisely, when quality variables are added), the consistency in

rankings is reduced. This issue may explain the fact that companies regulated by

yardstick mechanisms often try to renege on the regulatory decisions based on the

results of benchmarking. Finally, this paper contains discussion on the degree to

which relative performances evaluations and yardstick competition should be used

in a “light-handed” manner in regulatory policies. Indeed, if rankings or scores are

to be used in regulatory proceedings, great care must be taken to avoid unduly pe-

nalizing utilities, since the direct use of inefficiency estimates in the regulation of

water distribution utilities may be misleading.

The paper is organized as follows. Section 2 shortly reviews studies estimating

the cost function of water distribution companies and the UK experience of bench-

marking in this sector. The data description is provided in Section 3 and Section

4 presents the model specifications and the methodologies employed. In order to

check the robustness of our results, our empirical strategy is to estimate different

models, with different specifications in terms of physical output variables, environ-

mental variables and quality indicators. Moreover, we test different assumptions

concerning the cost inefficiency and the evolution of performances over the time pe-

riod considered in order to analyze the robustness and reliability of obtained cost

inefficiency scores and rankings. The estimation results are given in Section 5 and

Section 6 concludes the paper.

7



2 Benchmarking Water Utilities & The UK Ex-

perience

2.1 Past Studies on Benchmarking in Water Sectors

There is a growing importance of benchmarking of water utilities and various em-

pirical studies analyze the impact of different variables on firms’ efficiency.8 For

instance, some papers recently have specifically focused on assessing efficiency in

water utilities explicitly accounting for quality. As far as I know, the first paper

that did take quality into account when measuring water utilities’ performance was

that by Saal and Parker [2000,2001]. More recently, Antonioli and Filippini [2001],

Estache and Rossi [2002], Tupper and Resende [2004], Lin [2005], Saal and Parker

[2006] and Saal et al. [2007], Berg and Lin [2007], Bouscasse, Destandau and Garcia

[2008], Picazo-Tadeo et al. [2008] also develop the analysis of quality variables in

benchmarking in different countries.

Recent studies have focused on the relative performance of public and private water

utilities in various countries.9 For instance, Estache and Kouassi [2002], Estache

and Rossi [2002] and Bouscasse et al. [2008] analyze the effects of ownership on

utility performance and find significant differences between private and public water

utilities: the private operators are more efficient than public operators. For their

part, Kirkpatrick et al. [2006] and Seroa da Motta and Moreira [2006] find no

significant evidence of difference between ownership types.

The relevance of firm heterogeneity has also been emphasized by several authors,

like for instance Bhattacharyya et al. [1995], Ashton [2000], Tupper and Resende

[2004] and Filippini et al. [2008].

Other authors analyze the impact of regulation on firms’ efficiency (see for instance

Aubert and Reynaud [2005] and Saal et al. [2007]) and the economies of scale (see

for instance Saal and Parker [2005], Garcia et al. [2007] and Filippini et al. [2008]).

Although the advantages of benchmarking have been extensively highlighted in the

literature, there is still no consensus on the best method to use. For instance, Berg

and Lin [2007] compare the results provided by a SFA and a DEA-based benchmark-

ing in the case of water utilities in Peru and find that these methods yield similar

8See von Hirschhausen et al. [2008] for a recent and detailed survey on benchmarking in water
utilities.

9See Estache et al. [2004] for a comprehensive literature review. They survey productivity and
efficiency literatures in infrastructure industries in developing countries.
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rankings. In addition, the techniques have comparable success for identifying the

best and worse performing utilities. Similarly, Corton and Berg [2009] show that

SFA and DEA methods provide the same best performer when comparing the water

utilities in 6 countries in the Central American region.

However, some authors have underlined the fact that firms’ efficiency analysis is ac-

tually sensible to the empirical methodology employed and to the variables included

into the benchmarking process (See for instance Bauer et al. [1998], Botasso and

Conti [2003], Jamasb and Pollitt [2003], Farsi, Filippini and Greene [2005] and Farsi

and Filippini [2006]). Cubbin and Tzanidakis [1998] find that the rankings based on

the OLS model are different from the ones based on DEA models when comparing

the UK water utilities.10

Hence, different methodologies could provide different rankings. But this problem

may also appear within one method, depending on the specifications of the model.

Despite the importance of this issue, only a few papers examine the sensitivity of

efficiency and rankings based on different specifications within one benchmarking

method. For instance, Cubbin and Tzanidakis [1998] explain that the scores and

rankings may change, depending on the variables used in a DEA-based benchmark-

ing.11 They also highlight the fact that the rankings may be altered by the nature

of the returns to scale in a DEA model.12

With respect to the previous studies in the water distribution sector, the method-

ological contribution of this paper is that it analyzes in detail the results provided by

different specifications of SFA method, depending on the variables generally included

into this type of model. Moreover, the results of this empirical analysis could be of

interest in a regulatory context, since the study analyzes the consistency between

the rankings provided by the different specifications. Hence, this paper contains

discussion on the degree to which relative performances evaluations and yardstick

competition should be used in a “light-handed” manner in regulatory policies.

10“Under ideal conditions both RA (Regression Analysis) and DEA should be able to identify the
true company efficiency and produce similar results. This is not, however, the case in practice
since application of these two techniques on the same data set often produces strikingly different
efficiency results, particularly in the small samples which are prevalent in regulated industries.”

11“Equally worrying, however, are the changes in scores and rankings when we alter the spec-
ification of the DEA model. With two more variables [. . . ], some companies showed dramatic
improvements in their DEA scores [. . . ].”

12“Another example of this feature is that in DEA with constant returns there are three companies
appearing as fully efficient while in DEA with variable returns 13 out of 29 companies appear as
fully efficient.”
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2.2 The UK Experience of Benchmarking

Efficiency analysis and benchmarking was first applied to the price reviews of the

UK water industry.13 After the Regional Water Authorities of England and Wales

were privatized in November 1989, the successors Water and Sewerage Companies

(10 WASCs) and Water Only Companies (12 WOCs) faced a new regulatory regime

that was designed to promote economic efficiency while simultaneously improving

drinking water and environmental quality.

Ofwat placed considerable emphasis on yardstick competition in price cap setting,

and it is clear that the system of regulation comes closest in practice to Shleifer’s

[1985] benchmarking model. Ofwat assess the relative efficiency of the water and

sewerage companies in order to set price limits for the local monopolies. In the ab-

sence of a competitive market, Ofwat also use comparative competition to drive the

companies to become more efficient. The regulator monitors and publishes the com-

panies’ progress each year. At each price review, Ofwat use its assessments to derive

efficiency factors to include in price limits and to identify which companies qual-

ify for enhanced future incentives. Hence, Ofwat has two objectives for comparing

firms’ performances:

1. The sunshine regulation leads to publish the rankings of firms’ performances

and distribute the information regarding the relative performances of the reg-

ulated firms. If a firm appears less efficient than the others, this mechanism

will have a negative effect on the firm’s reputation. The distribution of the

comparison results will act as an indirect competition pressure, exerted above

all by stakeholders (users, medias, politicians, NGOs...).

2. The comparisons are used to set the price cap during the price reviews. The

regulator calculates the companies’ costs, taking into account a number of

indicators to capture some of the heterogeneity of operating conditions.

These price reviews are conducted by Ofwat every 5 years (1994, 1999, 2004, 2009).

The approach used by Ofwat in the 1994 review was described in detail by Thanas-

soulis [2000a,2000b]. Ofwat applied Data Envelopment Analysis and the water ac-

tivities were identified by“distribution”,“resources & treat”and“business activities”.

The outputs chosen were the number of connections, the length of main and the vol-

ume of water delivered (measured and delivered) with the operating expenditures as

13See for instance Sawkins [1995], Cubbin [2005], Allan [2006], Dassler et al. [2006], von
Hirschhausen et al. [2008] for a description of the Ofwat regulatory policy.
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an input. The efficiency results were then compared to regression results, and en-

tered into the price determination with the exact usage being confidential to Ofwat.

Therefore, price caps are not automatically determined by Ofwat (Stern [2005]).

Although Ofwat still used econometric techniques for the determination of price

caps in 1999, DEA was no longer employed (Dassler et al. [2006], von Hirschhausen

et al. [2008]). For the 2004 price review, Ofwat commissioned studies comparing

the results of OLS with DEA and SFA. At the time this paper was written, Ofwat

had not clearly announced its plans of using either DEA or SFA in the 2009 price

review. The first review of water and sewerage charges after privatization came in

1994. Ofwat maintained that there were difficulties in calculating total expenditure

due to problems with data collection and making comparisons between companies

serving different geographical areas (Dassler et al. [2006]). Therefore, operating

costs and capital costs were modeled separately, as were water supply and sewerage

services.

In parallel, each company must report to the regulator some information regarding

its performance in terms of quality of service. The“Report on levels of service for the

water industry in England and Wales” evaluates the firms’ performance for 8 quality

standards: (1) Reliability of the water distribution system (DG2, DG3); (2) Water

resources management by the company (DG4); (3) Reliability and quality of the

sewerage network (DG5); (4) Reactivity of each company concerning its customers’

complaints (DG6, DG7, DG8, DG9).

If Ofwat argues that it uses companies’ costs and operating conditions to assess

their relative efficiency, the regulator specifies that high costs do not always indicate

inefficiency, as a high cost company may be operating in a particularly unfavorable

environment. Similarly, low costs do not necessarily point to high efficiency, while

rising costs do not automatically indicate that a company is becoming less efficient.

For example, many companies face increasing costs for operating new treatment

works to meet higher quality standards. Hence, in both the operating expenditure

and capital maintenance models, Ofwat has reduced the modeling residuals (the

difference between actual costs and the costs predicted by the models) in order to

take some account of possible errors in the data and in the statistical process. In

other words, Ofwat recognizes the importance of specific and environmental condi-

tions when comparing firms’ performances. Thus, the benchmark company is not

always the company at the efficiency frontier. It needs to satisfy a number of cri-

teria, including size, to make it suitable for comparison with the rest of the industry.
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The water and sewerage industry regulation is thus a particularly interesting case.

First, Ofwat is the first regulator to have explicitly developed yardstick competition

and benchmarking in his regulatory mechanism. Second, Ofwat is an experimented

regulator who has collected a lot of information about this industry. Moreover, this

information is available from the Ofwat website. However, as introduced above,

enforcement difficulties and recurrent firms-led renegotiation occur in this sector.

Therefore, testing different specifications of SFA method on the UK water industry

enables to wonder whether the potential enforcement difficulties of benchmarking

and yardstick mechanisms come from informational problems for the regulator or

from the incompletness of the method used.

3 The Data

The dataset used in this study consists of an unbalanced panel of 22 company

observations on both Water And Sewerage Companies (10 WASCs) and Water Only

Companies (12 WOCs) observed over the period 2002-2008. The source of data

essentially comes from the “June Returns for the Water and Sewerage industries in

England and Wales” published by Ofwat each year. In the empirical application we

focus only on the water service and we do not consider the sewerage one.

The dependent variable. The dependent variable is the operating costs (Opex),

like for Cubbin and Tzanidakis [1998] and Thanassoulis [2000] in the case of water

companies in England and Wales, Corton [2003] for water companies in Peru, Tup-

per and Resende [2004] for water and sewerage companies in Brazil and Corton and

Berg [2009] for Central American water utilities. The operating costs in the Ofwat

database include energy, employment and material costs, but exclude the costs of

providing third party services. It also excludes atypical and exceptional costs, such

as restructuring costs.

The explanatory variables. The physical outputs or explanatory variables are:

1. The volume of water delivered (Vol);

2. The number of properties connected for water supply only (Prop).

Several papers have highlighted that improvement in assessing efficiency of water

utilities can be accomplished if both the volume of water delivered and the num-

ber of connected properties are considered as outputs (Thanassoulis [2000], Garcia

12



and Thomas [2001], Saal and Parker [2006], Picazo-Tadeo et al. [2007], Corton and

Berg [2009]). Saal and Parker [2006] argue that this specification is relevant because

the characteristics of outputs associated with the volume of water delivered to ex-

isting customers are rather different from those required for the provision of new

connections. Moreover, both outputs have substantially different marginal costs.

The volume of water delivered (Vol) is a conventional measure of the water

production activity and is represented, in the Ofwat database, by the total volume

of water delivered and billed to households and non-households.

The number of properties connected for water supply only (Prop) includes

the total number of household and non-household water-connected properties. As

noted by Saal and Reid [2004], previous researches (see for instance Antonioli and

Filippini [2001] and Garcia and Thomas [2001]) have suggested that because of the

cost of maintaining network connections, the number of connected properties is an

important determinant of water industry costs. According to Erbetta and Cave

[2007], this specification is a proxy for the scale of the distribution activity.

We expect that the higher these two variables, the higher the operating costs.14

Environmental Variables. The efficiency of a firm could be affected by exoge-

nous conditions that are not under the direct control of managers. Environmental

variables have been included because they may influence the technology under which

water utilities operate and may account for exogenous differences in operating en-

vironment experienced by each firm (see Bhattacharyya et al. [1995], Garcia and

Thomas [2001] among others). These variables enable to take account of the impact

of the different characteristics of the network and of the area where the service is

provided, thus controlling for heterogeneity among firms15:

1. The population density (PD);

2. The percentage of water losses (Loss);

3. The proportion of water delivered to non-households (NonH ).

14Following Ofwat, we also tested the length of mains as an output, like Cubbin and Tzanidakis
[1998], Thanassoulis [2000] and Corton [2003] for instance. Thanassoulis [2000] argued the length
of mains reflects the geographical dispersion of connections. For Berg and Lin [2007], this variable
is an indicator of capital. However, in our dataset, the lenght of mains is highly correlated to the
volume of water delivered. Because the volume of water delivered is commonly used as the main
output in water utilities, the lenght of mains indicator is dropped from the tests.

15The environmental variables used are consistent with many of the mentioned empirical studies.
See for instance Erbetta and Cave [2007].
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As noted by Saal and Reid [2004], an extensive literature has included measures of

the density of operations as an important determinant of water industry costs (see

for instance Bhattacharyya et al. [1995], Cubbin and Tzanidakis [1998], Antonioli

and Fillippini [2001], Estache and Rossi [2002]). Therefore, the water service density

or, in other words, The population density (PD) is included in our specification

and is defined as population per kilometer of water main (i.e. the ratio between the

population provided with water and the length of mains). For Erbetta and Cave

[2007], providing service to a more concentrated population is, generally, cheaper

than providing a dispersed population. The idea is that more dispersions of the

network, more frequent maintenance and more energy are needed. However, as

argued by Botasso and Conti [2003], the population density may have ambiguous

effects on cost inefficiency since, one the one hand, it may be more expensive too

service dispersed customers, but in the other hand, a higher density may create

congestion problems.

The percentage of water losses (Loss) with respect to the total volume of

water delivered (Distribution losses/Volume of water delivered) is a general proxy

for the operational condition of the distribution network. According to Erbetta and

Cave [2007], “a higher proportion of losses implies more critical conditions of the

network, thus a higher input use is expected”. However, other studies use the water

losses to take account for deficiencies in either operational or commercial practices.

Indeed, as argued by Corton and Berg [2009], water losses may reflect a cost trade

off between increasing water production and repairing network leaks to keep up

with water demand. Hence, the idea is that, to satisfy demand, managers may find

it more costly to repair leaks and to control water losses than to increase water

production. For Garcia and Thomas [2001], water network losses are considered

as a non-desirable output produced jointly with the service of water delivery. For

their part, Coelli et al. [2003] regard water losses as an indicator of the technical

quality of service. In this study, we assume, like Erbetta and Cave [2007], that the

percentage of water losses reflects an environmental and exogenous variable, which

might control for heterogeneity between firms.

The proportion of water delivered to non-households (NonH ) is the share

of water delivered to non-households customers on total water delivered. It reflects

the cost savings associated with supplies to larger customers. It is a proxy for the

importance of large (industrial) users. The idea is that a higher proportion of large

users is expected to reduce cost inefficiency because it is cheaper to distribute the

same amount of water to a few large users than to an high number of small customers
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(see Cubbin and Tzanidakis [1998], Botasso and Conti [2003] and Corton [2003]).

Finally, we add two dummy variables:

1. A “regulatory dummy” (Reg);

2. An “activity dummy” (Act).

Indeed, an other type of exogenous variable may be considered through a policy

variable that relates to regulatory policy and more specifically, the change in the

economic environment that occurs after the introduction of new regulatory con-

straints. Because there has been one price control (in 2004) during the period under

observation, we introduce in the model a first dummy variable (Reg), which as-

sumes a value of 1 for the three years after 2004-2005. The inclusion of this dummy

variable allows a test of whether, after this price review, the performance of the

companies was significantly greater. Finally, we add a variable reflecting the activ-

ity of companies as another dummy variable (Act), which assumes a value of 1

for the 10 WASCs and 0 for the 12 WOCs. This dummy should pick up technology

differences existing between the WASCs and the WOCs.

Quality Indicators. In addition to traditional measures of technical efficiency,

service quality is a performance indicator that warrants attention, since one im-

portant characteristic of water companies is that they must comply with quality

standards. In the water industry, the variables representing quality might differ

considerably from one country to another. In some developing countries, service

coverage, service continuity or the percentage of water receiving chemical treatment

are adequate variables to measure water quality (see for instance Lin [2005] and Berg

and Lin [2007] in the case of Peru, Corton and Berg [2009] for the Central American

water utilities). In contrast, in developed countries where water services cover nearly

all the population and water quality reaches higher standards, alternative measures

of quality are required (see for instance Alegre et al. [2006], Picazo-Tadeo et al.

[2007] and Bouscasse et al. [2008]). However, this paper does not aim to discuss the

reliability of different variables to measure quality in water utilities, but rather to an-

alyze whether the introduction of quality indicators changes the results of efficiency

measurement. For that purpose, we retain the following quality variables:

1. Concerning the drinking water quality, we retain the percentage mean zonal

compliance with drinking water Regulations (Drink).
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2. To measure the service quality provided to customers, we use:

• A measure of the perception by users of the offered quality of services on

the basis of the customers’ complaints (NonComp);

• The percentage of written complaints dealt with within 10 working days

(Written);

• The Call handling satisfaction indicator (Call).

3. To measure the “technical” performance of companies, we use:

• The percentage of properties receiving standard water pressure (SPress);

• An indicator reflecting the performance in terms of water supply inter-

ruptions (NInterrupt).

The Drinking water quality variable (Drink) reflects the percentage mean

zonal compliance with samples taken according to the current Drinking Water Qual-

ity Regulations during the calendar year (see for instance Saal and Parker [2000]).

These variables have been collected on the Drinking Water Inspectorate’s website.16

To measure the service quality, we use three proxies reflecting the “perception by

users of the quality of services provided” (see for instance Bouscasse et al. [2008]).

We use the number of customers’ complaints (like Corton and Berg [2009] and

Bouscasse et al. [2008], among others), which includes the total number of written

and telephone customers’ complaints for various reasons. This variable is available

in the annual June Returns of each company and on the Ofwat’s website. On the

basis of this variable, we calculate the share of customers who do not complain

during the year (NonComp). A small number of complaints indicates a higher

quality of service. Therefore, we expect that the higher the share of non-complaining

customers, the higher the operating costs.

The Ofwat regulation includes different quality standards, in particular the DG7 and

DG9 indicators: The percentage of written complaints dealt with within

10 working days (Written) and the call handling quality (Call).17 We

expect that the higher these variables, the higher the service quality provided by

the company and therefore, the higher the operating costs.

The last two quality variables are also included in the Ofwat’s quality standards

(DG2 and DG3 quality indicators) and represent a measure of the reliability of the

16http://www.dwi.gov.uk
17It represents an annual satisfaction score generated by 4 waves of customer surveys.
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distribution network. We use the percentage of properties receiving low water pres-

sure, which is available on the June Returns. It represents the part of the properties

in the company’s area of water supply which, at the end of the year, has received

and is likely to continue to receive a pressure or flow below the reference level. As

noted by Saal and Reid [2004], “Improvements in water pressure require substan-

tial expenditure on leakage control and improved system design and management.

Moreover, improved pressure was an important quality parameter pursued by Ofwat

in the years following privatization.” On the basis of this variable, we calculate the

percentage of properties receiving standard water pressure (SPress).

We also use the water supply interruptions indicator of the June Returns, which re-

flects the percentage of properties in the company’s area affected by unplanned and

unwarned supply interruptions (greater than 6 hours, 12 hours and 24 hours). On

this basis, we calculate the percentage of properties that is not affected by

unplanned and unwarned supply interruptions (NInterrupt). The higher

these two variables, the higher the reliability of the water distribution network.

Hence, we expect that the higher these variables, the higher the operating costs.

The variables are summarized in Tables 1 and 2.

4 The SFA Model Specifications

The setting of the X factor in a price cap regulation is always the subject of de-

bate. This issue has encouraged some regulators to consider the use of industry

benchmarks in the setting of X factors.18 This generally involves the calculation of

firm-level measures of relative efficiency, using a method such as OLS, DEA19 or

SFA.20 These methods have the advantage that they provide greater incentives for

efficiency improvements. However, it is often difficult to capture all aspects of a

particular businesses’ operating environment in a single model.

OLS methods are well known and easy to implement, however they could be crit-

icized since they require the specification of a functional form for the production

18See Coelli et al. [1998] for details regarding these various methods and their relative merits.
19See Charnes, Cooper and Rhodes [1978]. A comprehensive description of the use of DEA for

regulatory purposes is provided in Thanassoulis [2000]. See also Charnes et al. [1994] and Cooper
et al. [2004] for a survey of DEA applications.

20See Kumbhakar and Lovell [2000] for an exhaustive analysis on stochastic frontier and an
overview of various SFA methodologies.

17



Table 1: Variables in SFA

Name Description Role in SFA Sign

Opex Operating expenditure Dependant

Physical outputs Explanatory
V ol Volume of water delivered +
Prop Connected properties +

Quality indicators Explanatory
or inefficiency variables

Drink Mean zonal compliance with +
drinking quality water standards

NonComp Customers who do not complain +
Written Written complaints dealt +

with within 10 days
Call Call handling quality +

SPress Properties receiving standard pressure +
NInterrupt Properties not affected by +

unplanned interruptions

Environmental variables Control variables
or inefficiency variables

PD Population density +/-
Loss Percentage of water losses +

NonH Water delivered -
to non-households

Dummies Control variables
or inefficiency variables

Reg Regulatory variable -
Act Activity variable -

Operating expenditures in millions of GB £
Volume of water delivered in megaliters per day
Properties connected for water only in number
Mean zonal compliance with drinking quality standards in percentage
Share of customers who do not complain during the year in percentage
Written complaints dealt with within 10 working days in percentage
Call handling quality is a score
Properties receiving standard water pressure in percentage
Properties not affected by unplanned and unwarned supply interruptions in percentage
Population density reflects the population provided with water per kilometer of network
Water losses is the proportion of losses to the total volume of water delivered in megaliters per day
Proportion of water delivered to non-households in megaliters per day
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Table 2: Sample summary statistics
(22 companies in 2002-2008)

Variables Mean Standard deviation Min Max

Opex 78402.43 6925.60 5204 353799
Inputs price

PL 12.02 21.06 1.50 129.21
PM 46.09 26.26 21.94 315.84

Physical outputs
V ol 562.29 576.06 24.56 2179.44
Prop 286203.4 288855.6 59525 1262225

Quality indicators
Drink 99.91 0.10 98.96 100

NonComp 96.27 5.09 74.75 99.97
Written 98.70 5.49 64.79 100

Call 4.49 0.15 4.10 4.81
SPress 96.67 4.18 62.00 100

NInterrupt 99.51 1.63 81.55 100
Environmental variables

PD 68.83 15.52 46.27 110.32
Loss 16.72 5.06 6.78 32.26

NonH 28.55 5.76 17.27 49.84
Dummies

Reg 0.50 0.50 0 1
Act 0.45 0.50 0 1

technology, like SFA. Moreover OLS methods provide information on average per-

formance rather than frontier performance. DEA and SFA methods address this

latter problem by building efficiency frontier. As noted by Dassler et al. [2006],

Ofwat has commissioned a comparison of different benchmarking methods since

2000. DEA and SFA were compared with OLS results and were seen as credible

alternatives to OLS regression.

DEA does not require any specification of the functional form of the production

relationship but develops a frontier relating inputs to outputs. SFA constructs the

efficiency frontier with a sophisticated economic specification of the production re-

lationship. Its advantage is that the approach attempts to account for the effects

of noise in the data (data errors and omitted variables). With both DEA and

regression analysis, all deviation is attributed to inefficiency. Moreover, standard

statistical tests can be used with SFA to test hypotheses on model specification and

significance of the variables included in the model. The limitation of SFA is that, in

accounting for noise, it assumes that random shock and inefficiency display a specific

distribution. As argued by Filippini et al. [2008], since water distribution utilities

operate in different regions with different environmental and network characteristics

that are only partially observed, it is essential to be able to distinguish between
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inefficiency and data noises. Therefore, we adopt in this study a SFA approach,

originally proposed by Aigner, Lovell and Schmidt [1977] and Meeusen and Van den

Broeck [1977], assuming that deviations from the best practice frontier might be due

to both inefficiency and other random factors.

4.1 The stochastic cost frontier

This study examines cost efficiency by statistically estimating cost relationships

given a level of output produced. SFA constructs an efficiency frontier with a so-

phisticated economic specification of cost relationship. The cost frontier is chosen

because it can accommodate multiple outputs easily. A cost frontier shows costs as

a function of the level of outputs and the prices of inputs. Conceptually, the min-

imum cost function defines a frontier showing costs technically possible associated

with various levels of inputs and control variables.21

The stochastic cost frontier can be expressed as:

Ci = C(yi, pi, qi, ei, β) × exp {ǫi} i = 1, ..., N (1)

Where:

• Ci is the cost of the company i;

• yi is a vector of output quantities of the company i;

• pi is an input price vector faced by firm i. The input prices include the price of

labor and other variable inputs (essentially power and materials and services).

The price of labor (PL) is equal to total employment cost22 divided by total

number of employees. The price of other inputs (PM) is equal to the difference

between total inputs costs and labor cost, divided by total volume of water

delivered;

• qi is a vector of quality level for company i;

21A production frontier reveals technical relationships between inputs and outputs of firms and
represents an alternative when cost frontiers can not be calculated due to lack of data. The
estimated output is the maximum possible output for given inputs of an individual firm.

22The employment costs are the sum of the total costs of “non-manual and manual manpower”
which are directly attributable to each water service (e.g the gross salaries and wages of all employ-
ees within the water activity, including payments resulting from bonus and profit-related payment
schemes, employer’s National Insurance contributions, superannuation, unfunded pension liabili-
ties, private health insurance. . . ). The employment cost is not readily available and had to be
compiled using information in the companies’ regulatory and/or group annual accounts.
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• ei is a set of contextual factors reflecting the environment of firm i;

• β is a vector of technology parameters to be estimated.

With:

y ∈ {V ol, Prop}; p ∈ {PL, PM};

q ∈ {Drink,NonComp,Written, Call, SPress,NInterrupt};

e ∈ {PD,Loss,NonH,Act, Reg}.

Equation (1) is the cost frontier common to all water utilities, which determines the

minimum operating cost achievable for a given set of outputs, input prices, control

variables and quality level.

4.2 Taking the panel data into account

In early applications of SFA models to panel data (Pitt and Lee, [1981], Schmidt

and Sickles [1984] and Battese and Coelli [1988]), the common assumption was that

the productive efficiency is a time-invariant characteristic, i.e. the inefficiency is

assumed to be constant over time. This can be rather limiting assumption, particu-

larly in long panels. However, it may be a plausible assumption in non-competitive

operating environment. More recent papers (see for instance Battese and Coelli

[1992]) proposed a time-variant model to deal with the SFA panel data, in order to

account for variation of efficiency. However, Coelli et al. [2003] argue that a time

varying efficiency model restricts the technical efficiency of all firms since they follow

the same trend direction (either all increasing or all decreasing over time), and it is

unlikely to be valid in many instances.

In the case of time-varying model, according to the recommendations of Coelli et

al. [2003] and Estache et al. [2004], a time trend is added to the cost function to

capture the technical change.23

Therefore, equation (1) can be expressed as:

Cit = C(yit, pit, qit, eit, t, β) × exp {ǫit} (2)

In order to check the robustness of our results, these two stochastic frontier methods

for panel data are used in this study.

23See also Lin [2005].
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4.3 Modeling inefficiency effects

In the stochastic cost frontier, the error term ǫi can be decomposed in two parts in

order to separate noise from inefficiency in the model, with:

ǫit = vit + uit (3)

Where uit is a positive one-sided disturbance that captures the effect of firm- and

time-specific cost inefficiency. Therefore, uit is associated with the inefficiency of

the level of operating costs in the UK water companies, given the levels of outputs

and input prices. In other words, this non-negative error component reflects the

inability if a firm i at the observation t to attain the potential minimum operating

cost defined by the stochastic frontier (2). vi accounts for measurement errors in

the operating costs, for the effects of unspecified explanatory variables in the model

and for other company-specific random factors.

To separate noise from inefficiency in the model, typically one of a number of possible

distributional assumptions on ǫi is made. Different distribution models are tested in

this study in order to reduce the impact of choosing a specific distribution function

arbitrarily. The main distributional assumptions retained in the existing literature

are the following:

1. First assumption: an half-normal model.

The idiosyncratic error term vi is independently and identically distributed as

vi ∼ N(0, σ2
v), while ui ∼ iid N+(0, σ2

u). vi and ui are distributed indepen-

dently of each other and of other regressors.

2. Second assumption: a truncated normal model.

The idiosyncratic error term vi is still independently and identically distributed

as vi ∼ N(0, σ2
v), while ui ∼ iid N+(µ, σ2

u).

Battese and Coelli [1995] proposed a conditional mean efficiency model based on a

truncated normal model in order to identify some of the reasons for differences in

predicted efficiencies among firms in an industry. The model can be expressed as:

µi = ziδ (4)

µi is the mean parameter of the truncated normal distribution (of the truncated

normal model). zi is a vector of variables, which may influence the efficiency of a

company. δ is a vector of parameters to be estimated.
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The vectors of parameters δ and β are estimated by the Maximum likelihood method,

as the associated parameters σ2 = σ2
v+σ2

u and γ = σ2
u/σ

2. The parameter γ must lie

between 0 and 1 and provides a useful indication of the relative contributions of uit

and vit to ǫit. As γ → 0 the symmetric noise component vit dominates the one-sided

cost inefficiency term uit in determining the variation of global residual ǫit. When γ

moves toward 1, the relative effect of ui is more important.

Concerning, the environmental variables, Coelli et al. [1999] suggest that the lit-

erature offers two alternative approaches to the inclusion of these variables. One

assumes that environmental variables influence the shape of the technology and

that these factors should be included directly into the cost functions as regressors.

For the other approach, environmental factors directly influence the degree of tech-

nical efficiency and should be included in equation (4).

Similarly, Lin [2005] and Bouscasse et al. [2008] consider the quality variables ei-

ther as environmental variables that may influence the efficiency of a firm (quality

variables are therefore included in equation (4)) or as additional outputs of the cost

function.24 On this issue, different approaches have been followed in the literature

on water industry cost structure. For example, Bhattacharyya et al. [1995] include,

among others, a dummy variable for typology of sources in the frontier and a proxy

for the presence of industrial users in the inefficiency term. The same author, in

another paper, includes the sources dummy in the inefficiency term.

In order to check the robustness of our results, our empirical strategy is to estimate

different models, where the environmental and quality variables alternatively enter

as additional variables in the cost frontier or as variables explaining cost inefficiency.

4.4 The translog cost function

Estimation of cost function requires a specification of the functional form. The

most frequent are the translog (transcendental logarithmic) function and the Cobb-

Douglas function (Kumbhakar and Lovell [2000]). The translog cost function is

generally recognized to be a more flexible functional form than the Cobb-Douglas

one (see Chambers [1988], among others).25 For that reason, the translog functional

form is applied in this study.

24Quality variables could be regarded as additional outputs since the fulfillment of quality pro-
grams is usually expensive.

25The translog function is a flexible functional form which approximates any twice differentiable
function without imposing any a priori restrictions on the production technology.
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Quality and Environmental variables in the cost function. If we assume

that quality and environmental variables are additional variables in the cost frontier

(additional outputs for the quality variables, control variables for environmental

variables), the translog form of (2) can be written in the following way:

lnCit = β0 +
∑

m βm ln pmit +
∑

j βj ln yjit +
∑

k βk ln qkit +
∑

l βl ln elit

+1

2

∑
m

∑
m′ βmm′ ln pmit ln pm′it +

1

2

∑
j

∑
j′ βjj′ ln yjit ln yj′it

+1

2

∑
k

∑
k′ βkk′ ln qkit ln qk′it +

∑
m

∑
j βmj ln pmit ln yjit

+
∑

m

∑
k βmk ln pmit ln qkit +

∑
j

∑
k βjk ln yjit ln qkit

+d1Act+ d2Reg + αT + vit + uit

(5)

With (β0, βm, βj, βk, βl, βmm′ , βjj′ , βkk′ , βmj, βmk, βjk, d1, d2, α) the parameters to be

estimated.

T is a time trend variable used to capture the time varying effect which is common

to all the utilities in a specific time period, like for instance technology change or

policy change (Berg and Lin [2007]). Therefore, the time variable is interpreted as a

proxy for technological changes but not for changes in technical efficiency conditions,

which are embodied in the one-sided distributed error component.

The properties of the cost function are that it is concave, symmetric and linearly

homogeneous in input prices26, nondecreasing in input prices and nondecreasing in

output.

The explanation of cost inefficiencies. As noted before, the model proposed

by Battese and Coelli [1995] defines the inefficiency effects uit as non-negative ran-

dom variables assumed to be a function of a set of firm-specific explanatory variables

which may vary over time, zit, and an unknown vector of coefficients, δ, associated

with the zit. The explanatory variables in the inefficiency model are expected to

include any factors that help explain the extent to which the variable cost observa-

tions exceed the corresponding stochastic frontier cost values.

26The symmetric restrictions required for this are: βmm′ = βm′m, βjj′ = βj′j , βkk′ = βk′k,
βmj = βjm, βmk = βkm, βjk = βkj . Following Jorgenson [1986], Carrington et al. [2002] and
Estache et al. [2004], homogeneity can be imposed by normalizing the dependent variable and
factor prices with the price of one of the inputs: we normalized for the price of labor.
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The inefficiency effect incorporated in the composed error term ǫit of the general

stochastic frontier model (equations (2) and (3)) could be specified by the equation:

uit = δ0 + δzit + wit (6)

uit reflects the inability of firm i at the observation t to attain the potential minimum

cost defined by the stochastic frontier.

If we assume that quality and environmental variables are variables explaining inef-

ficiency, equation (6) can be expressed as:

uit = δ0 +
∑

φ

δφqφit +
∑

ψ

δψeψit + δτTit + wit (7)

where the φ subscript on δ and qit indexes quality variables

(φ = Drink,NonComp,Written, Call, SPress,NInterrupt); the ψ subscript on δ

and eit indexes environmental and dummy variables (ψ = PD,Loss,NonH,Reg,Act);

wit is a random variable making the inefficiency effect stochastic.

The Battese and Coelli’s model enables us to include both firm-specific and time

effects in the specification of inefficiency model. Therefore, when analyzing the time-

variant model, we also incorporate in equation (7) a time variable Tit indicating the

year of the observation involved. It specifies that inefficiency may change linearly

with respect to time according to the sign of the associated parameter, δτ .

The cost inefficiency is usually expressed in terms of cost inefficiency score:

EFFit =
Cit
CF
it

= exp {uit}

where Cit is the observed operating cost; CF
it is the frontier or minimum cost of the

i-th firm in time t. EFFit takes a value between one (when uit = 0) and infinity

(when uit → ∞). A cost inefficiency score of 1 indicates a firm on the frontier, while

non-frontier firms receive scores above 1.

When equation (7) is assumed, the overall cost inefficiency for the firm i at the t-th

observation is defined by:

EFFit = exp {uit} = exp {δ0 + δzit + wit} (8)

When quality and contextual variables are assumed to explain cost inefficiencies, the
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translog form of (2) can be written in the following way:

lnCit = β0 +
∑

m βm ln pmit +
∑

j βj ln yjit +
1

2

∑
m

∑
m′ βmm′ ln pmit ln pm′it

+1

2

∑
j

∑
j′ βjj′ ln yjit ln yj′it +

∑
m

∑
j βmj ln pmit ln yjit + vit + uit

(9)

Firms providing a higher quality level are expected to be more efficient than firms

producing a lower quality level with the same costs. Similarly, it is assumed here that

environmental factors directly influence the degree of technical efficiency. Therefore,

firms with favorable exogenous conditions (better characteristics of the network and

of the area) are expected to be more efficient than firms producing in worse envi-

ronments.

5 The SFA Empirical Results

The computer program FRONTIER 4.1 (developed by Coelli [1996]) is used to ob-

tain Maximum likelihood estimates of the parameters of the cost function and the

inefficiency component. The program can accommodate panel data; time-varying

and invariant efficiencies; half-normal and truncated normal distributions, which

have been proposed in the literature.

The stochastic frontier cost function is estimated using four different SFA specifi-

cations. Tables 3, 10, 20, 26 summarize the specifications tested. The differences

between the various specifications are related to the environmental and quality vari-

ables used, the assumptions imposed on the error term, cost inefficiency and the

evolution of productivity over time.

We label Model A a specification of equation (5) where physical outputs are in-

troduced as explanatory variables of operating costs. However, in many cases the

ranking obtained may be an unreliable indicator of the “true performance” of the

companies. It could be due to factors not under the immediate control of the

managers. Therefore, we also introduced variables controlling for heterogeneity

between utilities. We alternatively defined the vector of environmental variables

as ei = [Act, PD,NonH] or ei = [Act,Reg, PD,NonH,Loss]. In Model AEFF ,

these environmental variables are included in the inefficiency component. In order

to take quality performances into account, quality indicators are included, first as
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additional explanatory variables (in Model B), second as variables explaining cost

inefficiency, i.e. the quality variables are included in the inefficiency component (in

Model BEFF ).

5.1 Model A: Outputs and Environmental tests results

First, we estimate the cost frontier model with physical outputs and environmental

variables. The different specifications of Model A are summarized in Table 3. The

correlation coefficients between the physical outputs and between the environmental

variables are given in Tables 4 and 5. The literature offers two alternative approaches

to the inclusion of environmental variables. One assumes that these variables influ-

ence the shape of the technology and that these factors should be included directly

into the cost functions as regressors (section 5.1.1). For the other approach, envi-

ronmental factors directly influence the degree of technical efficiency and should be

included in equation (4), i.e. in the error term (section 5.1.2).

Table 3: Model A - The different specifications

Models Explanatory Dummy Environmental Distribution Time
variables variables assumption

A1 Pm, V ol, Prop Act PD, NonH Half-normal Invariant
A2 ” Act, Reg PD, NonH, Loss ui ∼ iid N+(0, σ2

u) ”
” vi ∼ iid N(0, σ2

v) ”
A′

1 Pm, V ol, Prop Act PD, NonH Truncated-normal Invariant
A′

2 ” Act, Reg PD, NonH, Loss ui ∼ iid N+(µ, σ2
u) ”

” vi ∼ iid N(0, σ2
v) ”

At1 Pm, V ol, Prop Act PD, NonH, T Half-normal Variant
At2 ” Act, Reg PD, NonH, Loss, T ui ∼ iid N+(0, σ2

u) ”
” vi ∼ iid N(0, σ2

v) ”
A′

t1 Pm, V ol, Prop Act PD, NonH, T Truncated-normal Variant
A′

t2 ” Act, Reg PD, NonH, Loss, T ui ∼ iid N+(µ, σ2
u) ”

” vi ∼ iid N(0, σ2
v) ”

Table 4: Correlation between the physical outputs

lnPm lnV ol lnProp
lnPm 1.000
lnV ol 0.133 1.000
lnProp -0.150 0.162 1.000
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Table 5: Correlation between the environmental variables

lnPD lnLoss lnNonH
lnPD 1.000
lnLoss 0.059 1.000

lnNonH -0.351 -0.003 1.000

5.1.1 Environmental variables as regressors to control for heterogeneity

between utilities

The efficiency of a firm could be affected by exogenous conditions that are not under

the direct control of managers. The inclusion of environmental variables enables to

take account of the impact of the different characteristics of the network and of the

area where the service is provided, thus controlling for heterogeneity among firms.

Since different operating conditions may have serious financial consequences for reg-

ulated firms, it is crucial to be able to explicitly model cost differences that are

due to heterogeneity and inefficiency. In order to find out whether accounting for

heterogeneity in the model significantly influences the results, the cost inefficiency

estimates obtained from the inclusion of different environmental variables are com-

pared. We also analyze the robustness and reliability of obtained rankings. The

estimation results of the translog cost frontier function of UK water distribution

utilities obtained by the eight specifications of the output & environmental model

are given in Table 6 (Appendix 1) in the case of an half-normal distribution and a

time-invariant model. The other results are available from the author.

With the eight specifications, the coefficients of V ol are surprisingly insignificant.

However, the coefficients of the number of properties (Prop) are significantly pos-

itive, that is consistent with the economic theory: more outputs leads to higher

costs. Moreover, the input price coefficients are positive and highly significant with

all specifications, i.e. whatever the assumptions retained and the environmental

variables included in the model. Concerning the environmental variables, the coeffi-

cients on PD are negative and significant27 at he 0.10 level. It suggests that a high

population density in a area decreases the operating costs of a company. However,

the results indicate no significant impact of the variable NonH on operating costs,

except for models A1 and A′
1, suggesting no significant cost savings associated with

supplies to larger customers. The coefficients on Loss are either significantly neg-

ative in time-invariant models or insignificant in time-varying models, reflecting an

27Except for the model At2, where the coefficient on PD is not significant.
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ambiguous impact of water losses on operating costs, as noted in section 3. The

positive and significant coefficients on the dummy Act surprisingly reflects cost ad-

vantages for the WOSCs. For the English and Welsh water and sewerage industry,

empirical evidence on the existence of scope economies between water and sewerage

services is mixed (See Hunt and Lynk [1995], Saal and Parker [2001] and Botasso

and Conti [2003]). Turning to the regulatory dummy, it should be note that Reg

has the expected (negative) sign and is significant. This result could be explained

by the change in the regulatory policy that took place in 2004. Finally, time varying

intercepts are never significant with these specifications, which suggests no signifi-

cant technological change over this time period.

What remains to be tested is whether the different specifications provide similar

rankings of the companies with respect to the cost inefficiency scores. Tables 7 and

8 of Appendix 1 show respectively the differences and the correlation between the

obtained rankings. When comparing the results on the basis of the environmental

variables included as regressors in the model and the assumptions retained (for the

error term distribution and the evolution of performance over time), we can note

that the correlation between the obtained rankings is very high (between 0.916 and

0.992) and that there is no strong difference between the rankings. Indeed, the

higher difference is for firm 13 (7th with model A′
1/14th with model At2). There-

fore, the introduction of environmental variables as regressors in the cost function

enables to obtain relatively similar rankings of the companies with respect to the

cost inefficiency scores. In addition, the different specifications have relatively com-

parable success for identifying the best and worse performing utilities (Firms 8 and

19 alternatively rank 1st or 2nd, whereas firm 5 is always the last in the ranking).

Table 9 shows the distribution of differences in rankings provided by Model A and

indicates that 86.36% of results provide differences in rankings lower than 5 ranks.

There is no case in which a firm has a variation of ranking higher than 10.

Table 9: Model A - Distribution of differences in rankings

Differences in rankings Number of cases %

Diff ≤ 5 19 86.36
5 < Diff ≤ 10 3 13.64
10 < Diff ≤ 15 0 0

Diff > 15 0 0
Total 22 100

Environmental variables may also be assumed to directly influence the degree of cost
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inefficiency. Therefore, some authors consider that these factors should be included

in the inefficiency term. Section 5.1.2 analyzes this case and compare the results

obtained with the situation where environmental variables are included as regressors.

5.1.2 Environmental variables to explain cost inefficiency

In order to check the robustness of our results, our empirical strategy is to esti-

mate different models, where the “environmental”variables Act, Reg, PD, Loss and

NonH alternatively enter as additional variables in the cost frontier or as variables

explaining inefficiency. Moreover, in order to analyze the time pattern of ineffi-

ciency we have included a trend variable in the inefficiency component in all models.

We label Model AEFF1 a specification of equations (7) and (9) where the activ-

ity and the policy dummies enter directly in the cost function, whereas the vector

e = [PD,Loss,NonH] are included in the inefficiency component. In Model AEFF2,

vector e = [PD,Loss,NonH] is dropped from the inefficiency term and replaced by

the dummies. Finally, for Model AEFF3, all environmental variables and dummy

variables are included in the inefficiency component.28 Table 10 summarizes the

three different models tested.

Table 10: Model AEFF - The different specifications

Models Explanatory var. Environmental var. Inefficiency var.
AEFF1 Pm, V ol, Prop Act, Reg PD, Loss, NonH, T
AEFF2 ” PD, Loss, NonH Act, Reg, T
AEFF3 ” None Act, Reg, PD, Loss, NonH, T

The results are given in Appendix 1, Table 11. The volume of water delivered (V ol)

is significantly positive only in Model AEFF3, and insignificant with other models.

Since cost and explanatory variables are in logarithms, the estimated first-order

coefficients can be interpreted as cost elasticities evaluated at the sample median.

Indeed, in a translog function, there are varying elasticities. Therefore, we have to

calculate the elasticities for the “average” network. The calculation of elasticities for

the input price, the volume of water delivered, the number of connected properties

are calculated in Appendix 1 and Table 12 in Appendix 1 indicates a cost elasticity

equal to 2.487 in Model AEFF3. In addition, cost elasticities with respect to the

number of connections (Prop) show that this variable significantly raise operating

cost in Models 2 (2.547) and 3 (2.487). The input price has also a positive and

28Other specifications have also been tested, without significant changes in results. These other
tests are available from the author.
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highly significant impact on operating costs with all specifications, with cost elastic-

ities of 0.063 in Model AEFF2 and 0.036 in Model AEFF3. Turning to environmental

variables, the activity dummy (Act) is positive and highly significant, when it is

included directly as a regressor (Model AEFF1). However, when this variable is in-

cluded in the inefficiency component, its coefficient is either not significant (Model

AEFF2) or significantly negative (Model AEFF3), reflecting an advantage in term

of cost efficiency for the 10 WASCs. The coefficient on policy dummy (Reg) is

significantly negative, both when it is added as a regressor (Model AEFF1) and a

variable explaining cost inefficiency (Model AEFF3). However, its coefficient is in-

significant in Model AEFF2. Moreover, the results indicate that a higher population

density (PD) decreases cost inefficiency when included as an explanatory variable

for inefficiency. A higher proportion of large (industrial) consumers (NonH) and

a higher percentage of losses (Loss) is found to decrease operating costs only in

Model AEFF1, reflecting the fact that a higher proportion of losses could imply defi-

ciencies in operational or commercial practices, rather than a more critical situation

that involves higher costs for the company. Finally, time varying intercepts are still

never significant with these specifications, which suggests no significant technologi-

cal change over this time period.

When comparing the way to include environmental variables into the inefficiency

component (Tables 13 and 14 in Appendix 1), we observe that the correlation of

rankings is now very low (between 0.078 and 0.284) and the models fail to identify

the same best and worse performing company. 31.8% of the cases provide differences

in rankings higher than 10 ranks with a maximum of 19 ranks for firms 14 and 20.

Only 18.2% of the cases provide differences lower than 5 ranks. The distribution of

differences in rankings in given in Table 15.

Table 15: Model AEFF - Distribution of differences in rankings

Differences in rankings Number of cases %

Diff ≤ 5 4 18.18
5 < Diff ≤ 10 11 50
10 < Diff ≤ 15 5 22.73

Diff > 15 2 9.09
Total 22 100

Moreover, when comparing models A and AEFF (Tables 16 and 17 in Appendix 1),

the correlation between the rankings is slightly higher, but only one case provides
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differences lower than 5 ranks. Table 18 shows the distribution of differences in

rankings when comparings these two models.

Table 18: Models A & AEFF - Distribution of differences in rankings

Differences in rankings Number of cases %

Diff ≤ 5 1 4.55
5 < Diff ≤ 10 11 50
10 < Diff ≤ 15 6 27.27

Diff > 15 4 18.18
Total 22 100

Almost half the cases (45.45%) gives differences in rankings higher than 10 ranks

with a maximum of 21 ranks for firm 8. Here again, the models fail to identify the

same best and worse performing company. These results show the sensitivity of the

stochastic frontier benchmarking methods in our sample. This is not particularly

encouraging since the results cannot be considered as reliable.

However, to check whether or not the inclusion of environmental variables in the

explanation of cost inefficiency is reliable, a likelihood ratio (LR) test must be con-

ducted. Therefore, turning to the one-side error component uit, we test the null

hypothesis that coefficients of the environmental variables are equal to zero simul-

taneously, e.g. H0 = γ = βPD = βLoss = βNonH = βAct = βReg = βT = 0 for

model AEFF3. The test statistic is distributed as a chi-square (χ2) random variable

with degrees of freedom equal to the number of restrictions involved (See Kodde and

Palm [1986]). This method enables to test the significance of the γ parameter. If

the null hypothesis is accepted, this would indicate that σ2
u = 0. Therefore, the uit

term should be removed from the model.

The LR tests suggest that the inclusion of environmental variables in the explana-

tion of cost inefficiency is unreliable, as the hypothesis that all parameters are jointly

zero can be accepted for the three models. Indeed, LR test results reported in Table

19 leads to accept the null hypothesis at the 0.001 level. Therefore, environmental

variables should be removed from the inefficiency term and included as regressors.

It can explain the wide differences in rankings provide by this kind of specification,

since Model AEFF is misleading.

In addition, one important characteristic of water companies is that they must com-

ply with quality standards. In section 5.2, stochastic cost frontier models are used

to explore the impact of quality variables on the firm efficiency evaluation.
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Table 19: Likelihood-ratio test for environmental variables as variables explaining
cost inefficiency

Null hypothesis Likelihood ratio χ2 statistic Decision
H0 : no inefficiency

AEFF1 γ = βPD = βLoss = βNonH = βT = 0 14.739 χ2
6(0.001) = 21.666 Accept H0

AEFF2 γ = βAct = βReg = βT = 0 7.580 χ2
5(0.001) = 19.696 Accept H0

AEFF3 γ = βPD = βLoss = βNonH = 19.619 χ2
8(0.001) = 25.370 Accept H0

βAct = βReg = βT = 0

5.2 Model B: The quality variables

As noted before, the quality variables can be considered either as additional outputs

of the cost function (section 5.2.1) or as environmental variables that may influence

the efficiency of a firm (quality variables are therefore included in the inefficiency

component) (section 5.2.2).

5.2.1 Quality variables as additional outputs

Drinking water, service and technical quality are other potential outputs (alongside

physical outputs) since a firm can always lower its costs by reducing the quality

“offered”. Incorporating quality variables into the benchmarking is crucial in order

to have a good understanding of utility performance. In order to find out whether

accounting for quality level in the model significantly influences the results, the rank-

ing obtained from the inclusion of different quality variables are compared.

In Models 1 (i.e. B1 B
′
1 Bt1 and B′

t1 depending on the assumption on the error

term and the evolution of performance over time), we introduce the variable Drink

as an additional output, alongside the volume of water delivered and the number

of connections, to proxy the drinking water quality level. We label Models 2 a

specification where the quality of service is included as an output, with the vector

q = [NonComp,Written, Call] which takes account for the customer’s complaints

and the reactivity of the company to deal with these complaints. Models 3 includes

proxies of “technical” quality as outputs, with the vector q = [SPress,NInterrupt]

to take account for the pressure level and the number of interruptions on the network.

Finally, all the quality variables are included as outputs in Models 4.

Table 20 summarizes the different specifications tested29 and Table 21 shows the

correlation coefficients between the quality variables included in the model.

29Other specifications have also been tested but it does not significantly change the obtained
rankings. These other tests are available from the author.
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Table 20: Model B - The different specifications

Time-Invariant models

Models Physical Quality Dummy Environmental Distrib.
outputs outputs variables

B1 Pm, V ol, Prop Drink Act, Reg PD, Loss, Half-
NonH

B2 ” NonComp, ” ” Normal
Written, Call

B3 ” SPress, NInterrupt ” ” ”

B4 ” Drink, NonComp, ” ” ”
Written, Call,

Spress, NInterrupt
B′

1 Pm, V ol, Prop Drink Act, Reg PD, Loss, Truncated-
NonH

B′
2 ” NonComp, ” ” Normal

Written, Call

B′
3 ” SPress, NInterrupt ” ” ”

B′
4 ” Drink, NonComp, ” ” ”

Written, Call,
Spress, NInterrupt

Time-Variant models

Bt1 Pm, V ol, Prop Drink Act, Reg PD, Loss, Half-
NonH, T

Bt2 ” NonComp, ” ” Normal
Written, Call

Bt3 ” SPress, NInterrupt ” ” ”

Bt4 ” Drink, NonComp, Written, ” ” ”
Written, Call,

Spress, NInterrupt
B′

t1 Pm, V ol, Prop Drink Act, Reg PD, Loss, Truncated-
NonH, T

B′
t2 ” NonComp, ” ” Normal

Written, Call

B′
t3 ” SPress, NInterrupt ” ” ”

B′
t4 ” Drink, NonComp, Written, ” ” ”

Written, Call,
Spress, NInterrupt
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Table 21: Correlation between the quality variables

lnDrink lnNonComp lnWritten lnCall lnSPress lnNInterrupt
lnDrink 1.000

lnNonComp 0.115 1.000
lnWritten -0.068 0.148 1.000

lnCall 0.135 0.075 0.206 1.000
lnSPress 0.158 0.214 0.028 0.004 1.000

lnNInterrupt 0.766 0.070 -0.026 0.112 0.038 1.000

The estimation results are given in Appendix 2, Table 22, in the case of a truncated-

normal distribution and a time-variant model. Other results are available from the

author.

The input price has a positive and highly significant impact on operating costs with

all specifications. The volume of water delivered (V ol) is significantly positive only

in Models 4, where all quality variables are included as outputs, and insignificant in

other models. In addition, cost elasticities with respect to the number of connec-

tions (Prop) show that this variable significantly raise operating cost in Models 1,

Models 2 and 4, with, for instance, elasticities between 0.110 and 0.940 in the case

of truncated-normal distributions and time-varying specifications.

Turning to quality outputs, the drinking water quality (Drink) has a significant and

positive impact on operating costs in Model 1 (with cost elasticities between 0.819

and 0.906 depending on the specifications retained), and is insignificant in Model

4. Therefore, in Model 1 a higher compliance with drinking water quality standards

leads, in average, to higher costs for the company. The proxies for the customer’s

complaints (NonComp) and the pressure level (SPress) are never significant. Fi-

nally the proxy for the number of interruption on the network (NInterrupt) is

always significantly positive: a low number of interruptions reflects higher operating

costs for the company.

The activity dummy (Act) is positive and highly significant with all specifications,

like in the output models, whereas the policy dummy (Reg) has the expected (neg-

ative) sign, reflecting higher performances after 2004, i.e. after the price review.

Moreover, the results indicate that a higher population density (PD) decreases costs,

except for Models 3 where this variable is not significant. A higher percentage of

losses (Loss) is found to decrease significantly the operational costs in Models 4

whatever the specifications, and in Models 1, 2, 3 when a time-invariant model is

assumed. Therefore, a higher proportion of losses may reflects an indicator of the

technical quality of service rather than a proxy for the operational condition of the
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distribution network: a higher proportion of losses does not imply more critical con-

ditions of the network in these tests. Finally, the proportion of large consumers

(NonH) and the time coefficients are never significant.

Tables 23 and 24 in Appendix 2 show respectively the consistency and the correlation

between the ranking when quality variables are introduced as additional outputs.

There are still few differences when comparing the rankings on the basis of the

distribution assumption and time assumption. Indeed, with the Half-Normal vs

Truncated-Normal models, the correlation of rankings is very high30 and only firm

13 obtains really different rankings (12th with model Bt4/5th with model B′
t4). With

the Time-invariant vs Time-variant models, the correlation between the rankings is

also very high31, and only firm 13 obtains really different rankings (7th with model

Bt3/14th with model B′
t3). However, when comparing the results on the basis of the

quality outputs considered in the model, although the correlation is high, between

0.847 and 0.980, some firms have really different rankings. For instances, firm 10

ranks 4th in models B4 and B′
4 and 13th in models B2 and B′

2. Firm 13 ranks 5th in

model B′
t4 and 14th in model B′

t3. Moreover, when introducing quality variables as

additional outputs, the models still fail to identify the same best and worse perform-

ing company. However, with these specifications, 72.73% of the cases now allow to

obtain differences in rankings lower than 5 ranks and there is no difference higher

than 9 ranks as noted in Table 25.

Table 25: Model B - Distribution of differences in rankings

Differences in rankings Number of cases %

Diff ≤ 5 16 72.73
5 < Diff ≤ 10 6 27.27
10 < Diff ≤ 15 0 0

Diff > 15 0 0
Total 22 100

Like in the case of environmental variables, quality factors may be assumed to di-

rectly influence the degree of cost inefficiency, i.e. they may be included in the

inefficiency term rather than directly in the cost function. Section 5.2.2 analyzes

this case and compares the results obtained with the situation where quality vari-

ables are included as regressors.

30Between 0.918 (model Bt4 vs B′
t4) and 0.993 (model Bt2 vs B′

t2).
31between 0.932 (model Bt3 vs B′

t3) and 0.996 (model Bt4 vs B′
t4).
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5.2.2 Quality variables to explain cost inefficiency

In order to check the robustness of our results, we estimate different models, where

the drinking water quality (Drink), the quality of service (NonComp, Written,

Call) and the technical quality (SPress, NInterrupt) alternatively enter either as

additional variables in the cost frontier or as variables explaining cost inefficiency.

Moreover, in order to analyze the time pattern of inefficiency we include a trend

variable in the inefficiency component in all models.

The technical quality is included in the inefficiency component in Model BEFF1, the

quality of service is included in Model BEFF2 and the water quality in Model BEFF3.

We label Model BEFF4 (resp. BEFF5 or BEFF6) a specification where the technical

quality (resp. the quality of service or the water quality) is included in the inef-

ficiency component and the other quality variables are directly used as regressors,

alongside the physical outputs (V ol and Prop). In Model BEFF7, all quality vari-

ables are assumed to explain cost inefficiency, and finally, in BEFF8, environmental

variables are added to the inefficiency component, alongside all quality variables.

Table 26 summarizes the eight different models tested.

Table 26: Model BEFF - The different specifications

Models Explanatory Quality outputs Environmental Inefficiency
variables variables variables

BEFF1 Pm, V ol, Prop None Act, Reg, PD SPress,
Loss, NonH NInterrupt, T

BEFF2 ” None ” NonComp,
Written, Call, T

BEFF3 ” None ” Drink, T
BEFF4 ” Drink, NonComp ” SPress,

Written, Call NInterrupt, T
BEFF5 ” Drink, SPress ” NonComp, Written,

NInterrupt Call, T
BEFF6 ” NonComp, Written ” Drink, T

Call, SPress
NInterrupt

BEFF7 ” None ” Drink, NonComp, Written
Call, SPress
NInterrupt,T

BEFF8 ” None None Act, Reg, PD
Loss, NonH, Drink
NonComp, Written

Call, SPress
NInterrupt, T

The results are given in Appendix 2, Table 27, for Models BEFF1, BEFF5 and BEFF8.

Indeed, LR test results reported in Table 28 lead to reject the null hypothesis at
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the 0.001 level only for these three tests. The results for the other specifications are

available from the author.

Table 28: Likelihood-ratio test for quality variables as variables explaining cost
inefficiency

Test Null hypothesis Likelihood ratio χ2 statistic Decision
BEFF1 H0 : no inefficiency 38.780 χ2

5(0.001) = 19.696 Reject H0

H0 = γ = βSPress = βNInterrupt

= βT = 0
BEFF2 H0 = γ = βNonComp = βWritten 2.932 χ2

6(0.001) = 21.666 Accept H0

= βCall = βT = 0
BEFF3 H0 = γ = βDrink = βT = 0 2.450 χ2

4(0.001) = 17.612 Accept H0

BEFF4 H0 = γ = βSPress = βNInterrupt 5.511 χ2
5(0.001) = 19.696 Accept H0

= βT = 0
BEFF5 H0 = γ = βNonComp = βWritten 40.827 χ2

6(0.001) = 21.666 Reject H0

= βCall = βT = 0
BEFF6 H0 = γ = βDrink = βT = 0 14.597 χ2

4(0.001) = 17.612 Accept H0

BEFF7 H0 = βDrink = βNonComp 8.711 χ2
9(0.001) = 27.133 Accept H0

= βWritten = βCall = βSPress

= βNInterrupt = βT = 0
BEFF8 H0 = βAct = βReg = βPD = βLoss 37.533 χ2

14(0.001) = 35.425 Reject H0

= βNonH = βDrink = βNonComp

= βWritten = βCall = βSPress

= βNInterrupt = βT = 0

As expected, the input price and the physical outputs have positive and significant

impact on operating costs, except for Model BEFF8 where the coefficient on input

price is not significant. Cost elasticities for the number of properties connected are

respectively equal to 0.964, 0.786 and 0.833 for Models BEFF1, BEFF5 and BEFF8.

Concerning the environmental variables, the population density (PD) has a signif-

icantly negative impact on costs when it is assumed to control for heterogeneity

between companies (Models BEFF1 and BEFF5) but it is insignificant as variable ex-

plaining cost inefficiencies, whereas the coefficient on the percentage of distribution

losses (Loss) is always significantly negative. Indeed, in Model BEFF8, the percent-

age of distribution losses has a significantly negative impact on cost inefficiency: the

higher the losses, the lower cost inefficiency. This result does not confirm the results

of Erbetta and Cave [2007] who consider that “a higher proportion of losses implies

more critical conditions of the network, thus a higher input use is expected”. This

result suggests instead that water losses may reflect that managers may find it more

costly to repair leaks and to control water losses than to increase water production.

The proportion of non-household customers (NonH) has a negative impact on costs,

only when added as a regressor: it reflects cost savings associated with supplies to
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larger customers in this case. However, this variable seems to have no direct impact

on cost inefficiency since its coefficient is not significant in Model BEFF8. Moreover,

the coefficient on the activity dummy (Act) is always significantly negative when

added as a regressor, suggesting an advantage for the ten WASCs due to the com-

bination of water and sewerage activities. However, Model BEFF8 shows that the

activity dummy has a positive and significant impact on cost inefficiency, reflecting

here an advantage for the WOCs. These results reflect the current debate concern-

ing the existence of scope economies between water and sewerage services. Finally,

the policy dummy (Reg) still has a negative impact on operating costs when added

as an environmental variable, but it is insignificant to explain cost inefficiencies.

Turning to quality factors, when technical quality variables are included as regres-

sors in Model BEFF5, only the proxy for the number of interruptions on the network

(NInterrupt) is significant. However, the two variables that proxy the techniqual

quality ((NInterrupt and SPress) are significant in Models BEFF1 and BEFF8, re-

flecting a significant and negative impact on cost inefficiency. This result shows that

a higher quality of infrastructure and network increases the efficiency of a company.

The quality of service, estimated by the customer’s satifaction and the reactivity of

companies (NonComp, Written and Call) has a significant and negative impact on

cost inefficiency when the service quality is the only measure of quality level (Model

BEFF5). It suggests here that a higher user’s satisfaction and a higher reactivity to

complaints increase the company efficiency. However, when other quality factors are

included in the inefficiency component (Model BEFF8), the service quality becomes

no significant to explain cost inefficiencies. The impact on operating costs of the

drinking water quality (Drink) is not significant when this variable is assumed as an

output (Model BEFF5) but is highly significant to explain cost inefficiency (Model

BEFF8): a better drinking water quality reflects a higher cost efficiency of a firm.

Finally, in Models BEFF1 and BEFF5 estimate results now show the existence of a

decreasing path of cost inefficiency over the sample period, as the coefficient related

to trend is significantly negative, but this trend is not significant in Model BEFF8.

Moreover, SFA recognizes that some of the distance from the best practice frontier

is attributable to random shocks or statistical noise in the data. The Maximum

likelihood estimated parameters γ are 0.999 in Models BEFF1 and BEFF5 and 0.643

in Model BEFF8. These results imply that deviations from the best practice frontier

are mostly entirely due to inefficiency in the two first models. Inefficiency is also the
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main resource of deviations in Model BEFF8, but here, random shocks still explain

more than 35% of deviations.

Since the null hypothesis is rejected by the LR test in these three models, our results

show that these specifications provide an adequate explanation of the inefficiency

sources in the UK water and sewerage sector.

Therefore, a first adequate specification consider that the technical quality is a good

explanation of cost inefficiency, when other quality variables are ignored (Model

BEFF1). However, Model BEFF5 indicates that an adequate specification is to in-

clude the number of interruptions on the network as a proxy for the technical quality

directly as an additional output and to introduce service quality variables to explain

cost inefficiencies. Finally, with Model BEFF8, the inclusion of the two technical

quality variables alongside the drinking water quality in the inefficiency component

provides an adequate specification for UK water utilities cost efficiency.

Hence, as regards these results, it seems difficult to decide what a proper specifica-

tion of UK water utilities cost inefficiencies, since the results depend on the variables

included directly in the cost function and in the inefficiency term. However, these

three tests show that omitting these quality indicators would wrongly reduce the

efficiency scores attributed to good quality services. Moreover, these results differ

from those found with Model B, when quality variables are assumed as additional

outputs. It underlines the interest of comparing the two specifications and it shows

how some factors can directly impact the technology structure and other influence

the performance of services (see Kumbhakar and Lovell [2000]).

Turning to the rankings obtained with these models, Tables 29 and 30 in Appendix

2 show the consistency and the correlation between the rankings when quality vari-

ables are assumed to explain cost inefficiencies. The correlation coefficients are

relatively low and equal to 0.434 (Model BEFF5 vs BEFF8) 0.579 (Model BEFF1 vs

BEFF8) and 0.803 (Model BEFF1 vs BEFF5) and differences exist between the rank-

ings (up to 13 ranks for firm 11). Moreover, the models still fail to identify the same

best performing company, which is different with the three models, and the worse

performer is the same only with models BEFF1 and BEFF5. As noted in Table 31,

in this case 22.7% of the cases provide differences in rankings higher than 10 ranks

and 36.36% give differences lower than 5 ranks.

What remains to be tested is whether the different specifications of quality variables

(as regressors or as variables in the inefficiency component) provide similar rankings
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Table 31: Model BEFF - Distribution of differences in rankings

Differences in rankings Number of cases %

Diff ≤ 5 8 36.36
5 < Diff ≤ 10 11 50
10 < Diff ≤ 15 3 13.64

Diff > 15 0 0
Total 22 100

of the companies with respect to the cost inefficiency scores. Table 32 in Appendix

2 indicates the consistency between the different rankings. Table 33 in Appendix 2

indicates that the correlation coefficients between the rankings obtained in Models B

and BEFF are very low. When comparing the efficiency scores with models B′
t4 and

BEFF8, where all quality variables are included either as regressors or in the ineffi-

ciency component, the correlation is equal to 0.447 and the rankings vary between

0 and 12. For instance firm 8 ranks 1st with Model B′
t4 and 13th with Model BEFF8;

firm 18 ranks alternatively 18th and 6th. When the technical quality variables are

included either as regressors (Model B′
t3) or in the inefficiency term (Model BEFF1),

the correlation between the rankings is 0.535 with differences varying between 1

and 17.32 Finally, in Model B′
t2 service quality variables were included as regres-

sors, while in Model BEFF5 these variables are assumed to explain cost inefficiency

and other quality variables are included as regressors. When comparing these two

specifications, the correlation between the rankings is still very low (0.399) and the

rankings vary between 0 and 17.33 More generally, only 18.2% of the cases provide

differences lower than 5 ranks and 54.5% give differences higher than 10 ranks as

noted in Table 34. The differences in rankings are between 3 and 18 such that the

different specifications fail to determine a same best and worse performing company.

Table 34: Models B & BEFF - Distribution of differences in rankings

Differences in rankings Number of cases %

Diff ≤ 5 4 18.18
5 < Diff ≤ 10 8 36.36
10 < Diff ≤ 15 9 40.91

Diff > 15 1 4.55
Total 22 100

32Firm 18 ranks 21st with Model B′
t3 and 4th with Model BEFF1.

33Firm 18 ranks 20th with Model B′
t2 and 3d with Model BEFF5.
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6 Conclusion

Benchmarking has become a very important tool especially for comparing the rel-

ative performance of different companies within a sector, informing citizens and

providing information to regulatory bodies, helping them improve incentives. In

this study, SFA model is used to explore the impact of the inclusion of different

variables and different assumptions on the firms efficiency evaluation. In addition

to traditional measures of efficiency which include physical outputs, environmental

variables are used to control for heterogeneity in environmental and network charac-

teristics across companies. Moreover, since quality is a performance indicator that

warrants attention when evaluating utilities performances, the study takes differ-

ent aspects of quality into account. This paper presents different specifications of

SFA model to illustrate how these additional indicators can be incorporated into

benchmarking studies and how performance rankings might be affected.

The results indicate that, in the case of UK water distribution utilities, environmen-

tal factors influence the shape of the technology and hence these factors should be

included directly into the cost function as regressors, rather than in the inefficiency

component. Moreover, the results show that some aspects of quality directly influ-

ence the degree of technical efficiency and hence should be included in the inefficiency

term, rather than as additional outputs.

In addition, this study examines how the introduction of different variables affects

performance comparisons across utilities. From the methodological point of view,

different distribution and time assumptions are tested in the study in order to re-

duce the impact of choosing a specific distribution function and time consideration

arbitrarily. The empirical results show that these different assumptions do not have

a significant impact on the rankings resulting from the benchmarking. However, the

inefficiency scores obtained from specifications of the cost function are not found

to be robust. The levels of inefficiency estimates as well as the rankings depend

on which variables are introduced into the model and on the way these variables

are included. The smallest differences in rankings are provided by Model A, when

physical outputs and environmental variables are directly included as regressors and

no quality indicator is taken into account. In this case, 86.36% of the results en-

able to obtain differences lower than 5 ranks. When introducing quality variables as

additional outputs (Model B), the models fail to determine a same best and worse

performing company. However, the correlation between rankings is still very high

and 72.73% of the results enable to limit the differences in rankings (differences lower
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than 5 ranks). Like with Model A, there is no case where a firm has a difference of

ranks higher than 10. Moreover, the results demonstrate that some quality variables

should be included in the inefficiency component for the model specification to be

reliable. However, in this case, the correlation between rankings becomes very low

and in 13.64% of the cases, differences in rankings are higher than 10.

What can we conclude from these results and what are the implications for reg-

ulators who decide to implement benchmarking methods and yardstick competi-

tion? Rankings help inform the public, directing attention toward poorly perform-

ing utilities and providing information to policy-makers and regulators regarding

deviations from best practice. The reliability of efficiency scores is crucial for an

effective implementation of incentive-based price regulation. However, the evidence

from empirical studies shows that the various benchmarking methods (parametric

vs non-parametric approaches) often produce different results with respect to firms’

efficiency scores and rankings. This study demonstrates that this difficulty also ex-

ists when using different specifications within one method: although the ranking

correlation is often high within the models, the rankings can change dramatically

for specific utilities. These results show the sensitivity of the stochastic frontier

benchmarking methods in our sample, even in an “ideal” case where a lot of data

are available. Therefore, the lack of consistency, and indirectly the enforcement

difficulties, don’t seem to be due to a lack of information for the regulator. On

the contrary, the results indicate that, when adding more variables into the SFA

specification (more precisely, when quality variables are added), the consistency in

rankings is reduced. This issue may explain the fact that companies regulated by

yardstick mechanisms often try to renege on the regulatory decisions based on the

results of benchmarking. In this context, firms-led renegotiation would be partly

justified by the incompleteness of the method used. As a consequence, if rankings

or scores are to be used in regulatory proceedings, great care must be taken to avoid

unduly penalizing utilities, since the direct use of inefficiency estimates in the regula-

tion of water distribution utilities may be misleading. The lack of consistency of the

results suggests that a mechanical use of SFA inefficiency scores in a price-setting

process is not necessarily recommended.

In a policy and regulatory point of view, different recommendations may be pro-

posed. First, one can conclude that benchmarking results should only be used as

a starting point for providing information about the range in which the inefficiency
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scores can be located, but should not result in the implementation of penalties for

relative bad performing utilities. In the same way, the consistency problem could

lead to privilege a“softer” form of yardstick competition, i.e. the sunshine regulation

which does not lead to implement mechanisms for rewarding or penalizing poorly

performing firms, other than “naming and shaming” the latter.

Indeed, a “strict” form of yardstick competition denotes the use of benchmarking

results to determine maximum prices or revenues. This type of application could

lead (and often leads) to tensions and disputes between the regulator and regu-

lated companies. These enforcement difficulties are due to the incompleteness of the

benchmarking method used and its challenge by operators. However, it does not

mean that companies refuse any application of benchmarking, since the implemen-

tation of softer forms of yardstick competition, such as sunshine regulation, is less

subject to discussion by the regulated firms. For instance, De Witte and Saal [2008]

studied the application of yardstick competition in the Dutch water sector. They

explain that the regulator initially applied a voluntary sunshine regulatory model in

which firms committed themselves to publicize their performance. Then, the Dutch

government proposed a new law to implement a stricter form of yardstick competi-

tion to the sector. However, as noted by De Witte and Saal [2008], “it seems that the

uncertainty relatively to the regulatory model undermined the willingness to partic-

ipate in the voluntary benchmark. Whereas in 1997 and 2000, respectively, 78 and

71 percent of the companies participated, in 2003 this decreased to only two thirds

of the utilities. Although all companies are officially in favour of benchmarking, in

their annual accounts some companies commented on the imprecise methodology (e.g.

measuring costs per m3 or per connection could deliver significant different results).”

However, this study shows that the different approaches are not consistent in iden-

tifying “best” or “worse” firms (except with Model A where no quality indicators are

included). Therefore, even a softer form of yardstick competition may be difficult to

implement. Indeed, as noted by Estache et al. [2004], a “mild” form of benchmark-

ing regulation can be relied on when different models are consistent in identifying

best and/or worse performing companies, even if the ranking consistency test fails.

As regard these two difficulties (lack of consistency in efficiency rankings and in

identifying best or worse firms), we can wonder whether yardstick mechanism could

be efficient in terms of incentives provided to regulated companies and information

collected by regulators since even “mild” forms of comparative regulation could be

unreliable. In this context, Le Lannier [2009] shows that taking account of enforce-
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ment difficulties of yardstick competition does not prevent the implementation of

this incentive scheme, but requires an adaptation of the contractual design. Indeed,

consistency problems (i.e. enforcement difficulties) should lead the regulatory bod-

ies to choose more “flexible” yardstick contracts to take account of the possibility of

firms-led renegotiation. With this type of contractual design the regulators will have

the opportunity to adapt the regulatory contract to future contingences or forecast-

ing errors. Therefore, a flexible yardstick contract would enable to partly overcome

the incompletness of benchmarking methods.
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Appendix

Appendix 1 - Physical Outputs & Environmental Variables

Table 6: Model A - Estimation results of the cost frontier:
Half-normal distribution and time-invariant model

Variables B1 B2

Constant 16.531** 14.690**
(7.386) (6.934)

lnPm 1.588** 2.389***
(0.962) (0.905)

lnV ol -0.339 -0.201
(0.615) (0.636)

lnProp 1.846* 1.789*
(1.168) (1.128)

(ln Pm)2 -0.104*** -0.125***
(0.025) (0.024)

(lnV ol)2 0.088** 0.107**
(0.045) (0.047)

(lnProp)2 -0.101** -0.107**
(0.055) (0.057)

lnPm lnV ol 0.220*** 0.164***
(0.045) (0.045)

lnPm lnProp -0.164** -0.200***
(0.075) (0.070)

lnV ol lnProp -0.029 -0.051
(0.082) (0.088)

Act 0.976*** 1.089***
(0.175) (0.179)

lnPD -0.360* -0.344*
(0.249) (0.278)

lnNonH -0.210** -0.117
(0.120) (0.112)

lnLoss - -0.121*
(0.089)

Reg - -0.101***
(0.026)

σ2 = σ2
v + σ2

u 0.068*** 0.069***
(0.020) (0.022)

γ = σ2
u/σ2 0.708*** 0.751***

(0.091) (0.083)
Log Likelihood 51.400 59.175

Notes: standard errors in brackets;
*p < 0.10; **p < 0.05; ***p < 0.01

The elasticities for the input price, the volume of water delivered, the number of

connected properties are calculated as follows:

ǫi =
∂ lnOpex

∂ lnYi
= βi + 2βii ln x̃i +

∑

j 6=i

βij ln X̃j
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Table 7: Model A - Consistency in efficiency ranking

ID Firms Ranking
Best Worst Difference

1 Anglian Water services Ltd 8 14 6
2 Northumbrian Water Ltd 8 12 4
3 Severn Trent Water Ltd 15 15 0
4 South West Water Ltd 10 13 3
5 Southern Water Services Ltd 22 22 0
6 Thames Water Utilities Ltd 6 7 1
7 United Utilities Water plc 20 21 1
8 Dwr Cymru Cyfyngedig 1 2 1
9 Wessex Water Services Ltd 12 14 2
10 Yorkshire Water Services Ltd 4 9 5
11 Bournemouth & West Hampshire Water plc 3 9 6
12 Bristol Water plc 16 17 1
13 Cambridge Water Company plc 7 14 7
14 Dee Valley Water plc 19 20 1
15 Veolia Water South East Ltd 4 5 1
16 Mid Kent Water plc 18 18 0
17 Portsmouth Water plc 16 17 1
18 South East Water Ltd 19 21 2
19 South Staffordshire Water plc 1 2 1
20 Sutton & East Surrey Water plc 3 8 5
21 Veolia Water East Ltd 9 11 2
22 Veolia Water Central Ltd 6 11 5

Min Diff. 0
Max Diff. 7

Table 8: Model A - Correlation between the rankings

B1 B2 B′
1 B′

2 Bt1 Bt2 B′
t1 B′

t2

B1 1.000
B2 0.953 1.000
B′

1 0.991 0.927 1.0000
B′

2 0.951 0.985 0.933 1.000
Bt1 0.960 0.969 0.932 0.948 1.000
Bt2 0.945 0.988 0.916 0.970 0.975 1.000
B′

t1 0.953 0.965 0.930 0.950 0.992 0.976 1.000
B′

t2 0.952 0.984 0.926 0.984 0.972 0.992 0.980 1.000
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Table 11: Model AEFF - Estimation results of the cost frontier

Model AEFF1

Variables Estimated parameter Standard dev.
Constant 2.079 31.576

lnPm 3.143*** 1.021
lnV ol 0.226 0.355
lnProp -0.398 0.843
(ln Pm)2 -0.086*** 0.025
(lnV ol)2 0.129*** 0.037
(lnProp)2 0.070** 0.036

lnPm lnV ol 0.159*** 0.053
lnPm lnProp -0.262*** 0.076
lnV ol lnProp -0.106** 0.057

Act 1.005*** 0.159
Reg -0.084* 0.062

Constant 2.328 30.996
lnPD -0.464*** 0.150
lnLoss -0.156** 0.089

lnNonH -0.216** 0.104
T 0.002 0.018

σ2 = σ2
v + σ2

u 0.033*** 0.004
γ = σ2

u/σ2 0.499 9.716
Log Likelihood 37.443

Model AEFF2

Variables Estimated parameter Standard dev.
Constant 25.724*** 0.990

lnPm -1.783** 0.986
lnV ol -0.674 0.906
lnProp -2.489*** 0.537
(ln Pm)2 -0.058 0.115
(lnV ol)2 -0.015 0.141
(lnProp)2 0.061* 0.044

lnPm lnV ol 0.283* 0.196
lnPm lnProp 0.087 0.078
lnV ol lnProp 0.112* 0.084

lnPD -0.296 0.889
lnLoss 0.077 0.951

lnNonH -0.470 0.987
Constant -0.044 0.395

Act 0.120 0.420
Reg 0.030 0.686
T 0.009 0.123

σ2 = σ2
v + σ2

u 0.043*** 0.004
γ = σ2

u/σ2 0.000*** 0.000
Log Likelihood 23.900

*p < 0.10; **p < 0.05; ***p < 0.01
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Table 11: Continuation

Model AEFF3

Variables Estimated parameter Standard dev.
Constant 23.037*** 0.988

lnPm -1.655** 0.938
lnV ol -0.953* 0.665
lnProp -2.001*** 0.339
(ln Pm)2 -0.068*** 0.026
(lnV ol)2 -0.053*** 0.019
(lnProp)2 0.023 0.024

lnPm lnV ol 0.264*** 0.058
lnPm lnProp 0.089* 0.068
lnV ol lnProp 0.177*** 0.055

Constant 0.495** 0.253
Act -0.151*** 0.037
Reg -0.200** 0.101

lnPD -0.416*** 0.110
lnLoss -0.006 0.033

lnNonH 0.069 0.84
T -0.009 0.023

σ2 = σ2
v + σ2

u 0.043*** 0.006
γ = σ2

u/σ2 0.001*** 0.000
Log Likelihood 19.917

*p < 0.10; **p < 0.05; ***p < 0.01

with Yi ∈ {Pm, V ol, Prop}

For instance, the elasticity of the input price is as follows:

ǫPm
=
∂ lnOpex

∂ lnPm
= βPm

+ 2βPm,Pm
ln P̃m + βPm,V ol ln Ṽ ol + βPm,P rop ln P̃ rop

Table 12: Cost elasticities - Model AEFF

Explanatory ǫi

variables AEFF2 AEFF3

Pm 0.063 0.036
Prop 1.241 0.555
V ol 2.547 2.487
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Table 13: Model AEFF - Consistency in efficiency ranking

ID Firms Ranking Difference
AEFF1 AEFF2 AEFF3

1 Anglian Water services Ltd 15 16 8 8
2 Northumbrian Water Ltd 6 20 6 14
3 Severn Trent Water Ltd 13 18 16 5
4 South West Water Ltd 18 17 17 1
5 Southern Water Services Ltd 19 22 7 15
6 Thames Water Utilities Ltd 1 14 18 17
7 United Utilities Water plc 12 21 19 9
8 Dwr Cymru Cyfyngedig 16 15 22 7
9 Wessex Water Services Ltd 17 19 9 10
10 Yorkshire Water Services Ltd 4 13 14 10
11 Bournemouth & West Hampshire Water plc 3 6 1 5
12 Bristol Water plc 11 8 10 3
13 Cambridge Water Company plc 14 7 5 9
14 Dee Valley Water plc 21 11 2 19
15 Veolia Water South East Ltd 9 4 3 6
16 Mid Kent Water plc 20 5 13 15
17 Portsmouth Water plc 8 12 4 8
18 South East Water Ltd 22 10 21 12
19 South Staffordshire Water plc 2 3 15 13
20 Sutton & East Surrey Water plc 10 1 20 19
21 Veolia Water East Ltd 5 9 11 6
22 Veolia Water Central Ltd 7 2 1 10

Min Diff. 1
Max Diff. 19

Table 14: Model AEFF - Correlation between the rankings

AEFF1 AEFF2 AEFF3

AEFF1 1.000
AEFF2 0.284 1.000
AEFF3 0.085 0.078 1.0000
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Table 16: Models A & AEFF - Consistency in efficiency ranking

ID Firms Ranking
Best Worse Diff.

1 Anglian Water services Ltd 8 16 8
2 Northumbrian Water Ltd 6 20 14
3 Severn Trent Water Ltd 13 18 5
4 South West Water Ltd 10 18 8
5 Southern Water Services Ltd 7 22 15
6 Thames Water Utilities Ltd 1 18 17
7 United Utilities Water plc 12 21 9
8 Dwr Cymru Cyfyngedig 1 22 21
9 Wessex Water Services Ltd 9 19 10
10 Yorkshire Water Services Ltd 4 14 10
11 Bournemouth & West Hampshire Water plc 1 9 8
12 Bristol Water plc 8 17 9
13 Cambridge Water Company plc 5 14 9
14 Dee Valley Water plc 2 21 19
15 Veolia Water South East Ltd 3 9 6
16 Mid Kent Water plc 5 20 15
17 Portsmouth Water plc 4 17 13
18 South East Water Ltd 10 22 12
19 South Staffordshire Water plc 1 15 14
20 Sutton & East Surrey Water plc 1 20 19
21 Veolia Water East Ltd 5 11 6
22 Veolia Water Central Ltd 2 12 10

Min Diff. 5
Max Diff. 21

Table 17: Models A & AEFF - Correlation between the rankings

AEFF1 AEFF2 AEFF3 A′
t1 A′

t2

AEFF1 1.000
AEFF2 0.284 1.000
AEFF3 0.085 0.078 1.0000

A′
t1 0.6330 0.411 -0.113 1.000

A′
t2 0.633 0.436 -0.071 0.992 1.000
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Appendix 2 - Quality Variables

Table 22: Model B - Estimation results of the cost frontier:
Truncated-normal distribution and time-variant model

Variables B′
t1 B′

t2 B′
t3 B′

t4

Constant 14.980** 13.953* 31.219*** -107.304***
(7.936) (10.193) (12.826) (6.985)

lnPm 2.175*** 2.315*** 2.570*** 1.327**
(0.881) (0.877) (0.888) (0.748)

lnV ol -0.290 -0.271 -0.558 0.990**
(0.552) (0.592) (0.615) (0.542)

lnProp -2.046** -1.961** -1.209 -2.809***
(0.937) (0.929) (0.984) (0.821)

lnDrink -8.265** - - -1.239
(4.175) (2.997)

lnNonComp - 3.420 - 1.703
(4.188) (2.937)

lnWritten - 0.005 - 4.761**
(3.350) (2.185)

lnCall - 3.332* - 5.220**
(2.441) (2.893)

lnSPress - - -0.939 -8.180
(7.985) (6.031)

lnNInterrupt - - 1.505** 1.176***
(5.226) (4.084)

Act 1.083*** 1.050*** 1.085*** 0.898***
(0.155) (0.162) (0.155) (0.141)

lnPD -0.360* -0.358* -0.156 -0.427***
(0.251) (0.261) (0.347) (0.209)

lnLoss -0.109 -0.107 -0.099 -0.151***
(0.088) (0.086) (0.086) (0.075)

lnNonH -0.112 -0.087 -0.119 -0.029
(0.105) (0.106) (0.106) (0.090)

Reg -0.126** -0.165** -0.162** 0.095
(0.062) (0.075) (0.075) (0.086)

T 0.012 0.17 0.012 0.003
(0.016) (0.018) (0.019) (0.019)

σ2 = σ2
v + σ2

u 0.146* 0.138* 0.114** 0.158***
(0.113) (0.092) (0.060) (0.051)

γ = σ2
u/σ2 0.890*** 0.897*** 0.870*** 0.950***

(0.098) (0.080) (0.076) (0.019)
Log Likelihood 63.622 71.132 68.715 107.145
Notes: standard errors in brackets;
*p < 0.10; **p < 0.05; ***p < 0.01
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Table 23: Model B - Consistency in efficiency ranking

ID Firms Ranking
Best Worse Difference

1 Anglian Water services Ltd 6 13 7
2 Northumbrian Water Ltd 6 11 5
3 Severn Trent Water Ltd 15 21 6
4 South West Water Ltd 9 14 5
5 Southern Water Services Ltd 21 22 1
6 Thames Water Utilities Ltd 4 9 5
7 United Utilities Water plc 20 22 2
8 Dwr Cymru Cyfyngedig 1 4 3
9 Wessex Water Services Ltd 11 14 3
10 Yorkshire Water Services Ltd 4 13 9
11 Bournemouth & West Hampshire Water plc 2 8 6
12 Bristol Water plc 15 18 3
13 Cambridge Water Company plc 5 14 9
14 Dee Valley Water plc 16 19 3
15 Veolia Water South East Ltd 1 5 4
16 Mid Kent Water plc 14 19 5
17 Portsmouth Water plc 16 19 3
18 South East Water Ltd 18 22 4
19 South Staffordshire Water plc 1 4 3
20 Sutton & East Surrey Water plc 3 8 5
21 Veolia Water East Ltd 10 16 6
22 Veolia Water Central Ltd 6 10 4

Min Diff. 1
Max Diff. 9
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Table 24: Model B - Correlation between the rankings

Half-Normal vs Truncated-Normal distribution

B1 B2 B3 B4 B′
1 B′

2 B′
3 B′

4

B1 1.000
B2 0.962 1.000
B3 0.987 0.968 1.0000
B4 0.935 0.900 0.946 1.000
B′

1 0.981 0.961 0.977 0.932 1.000
B′

2 0.944 0.988 0.956 0.909 0.966 1.000
B′

3 0.962 0.983 0.977 0.920 0.974 0.980 1.000
B′

4 0.871 0.837 0.888 0.959 0.890 0.853 0.887 1.000

Bt1 Bt2 Bt3 Bt4 B′
t1 B′

t2 B′
t3 B′

t4

Bt1 1.000
Bt2 0.969 1.000
Bt3 0.980 0.966 1.000
Bt4 0.949 0.939 0.965 1.000
B′

t1 0.988 0.983 0.979 0.960 1.000
B′

t2 0.948 0.993 0.959 0.940 0.970 1.000
B′

t3 0.975 0.961 0.993 0.970 0.980 0.957 1.000
B′

t4 0.840 0.839 0.850 0.918 0.863 0.847 0.866 1.000

Time-Invariant vs Time-Variant assumption

B1 B2 B3 B4 Bt1 Bt2 Bt3 Bt4

B1 1.000
B2 0.962 1.000
B3 0.987 0.968 1.000
B4 0.935 0.900 0.946 1.000
Bt1 0.986 0.940 0.972 0.919 1.000
Bt2 0.972 0.983 0.974 0.920 0.969 1.000
Bt3 0.969 0.931 0.975 0.931 0.980 0.966 1.000
Bt4 0.945 0.908 0.966 0.965 0.949 0.939 0.965 1.000

B′
1 B′

2 B′
3 B′

4 B′
t1 B′

t2 B′
t3 B′

t4

B′
1 1.000

B′
2 0.966 1.000

B′
3 0.974 0.980 1.000

B′
4 0.890 0.853 0.887 1.000

B′
t1 0.967 0.939 0.949 0.852 1.000

B′
t2 0.943 0.972 0.965 0.838 0.970 1.000

B′
t3 0.941 0.913 0.932 0.856 0.980 0.957 1.000

B′
t4 0.895 0.857 0.889 0.996 0.863 0.847 0.866 1.000
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Table 27: Model BEFF - Estimation results of the cost frontier

Model BEFF1

Variables Estimated parameter Standard dev.
Constant 21.327*** 1.059

lnPm 1.230** 0.694
lnV ol 4.323*** 0.462
lnProp -4.111*** 0.262
lnPD -0.708*** 0.197
lnLoss -0.105*** 0.034

lnNonH -3.614* 0.074
Act -0.598*** 0.221
Reg -0.134*** 0.021

Constant -9.895*** 1.714
lnSPress -0.415* 0.287

lnNInterrupt -2.204*** 0.370
T -0.052*** 0.013

σ2 = σ2
v + σ2

u 0.032*** 0.003
γ = σ2

u/σ2 0.999*** 0.000
Log Likelihood 108.032

Model BEFF5

Variables Estimated parameter Standard dev.
Constant 55.038*** 0.998

lnPm 1.321*** 0.329
lnV ol 5.607*** 0.404
lnProp -4.009*** 0.275
lnDrink -0.515 0.918
lnSPress 0.614 0.500

lnNInterrupt 1.798*** 0.818
lnPD -0.595*** 0.043
lnLoss -0.024*** 0.034

lnNonH -0.137*** 0.034
Act -0.412*** 0.066
Reg -0.085*** 0.008

Constant 0.400 0.957
lnNonComp -2.272*** 0.442
lnWritten -0.352* 0.239

lnCall -0.889** 0.535
T -0.027** 0.012

σ2 = σ2
v + σ2

u 0.041*** 0.001
γ = σ2

u/σ2 0.999*** 0.000
Log Likelihood 125.967

*p < 0.10; **p < 0.05; ***p < 0.01
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Table 27: Continuation

Model BEFF8

Variables Estimated parameter Standard dev.
Constant 9.131*** 1.480

lnPm 0.806 0.774
lnV ol 7.018*** 0.735
lnProp -3.446*** 0.304

Constant -1.419 1.160
Act 0.379*** 0.117
Reg 0.104 0.085

lnPD 0.162 0.130
lnLoss -0.205** 0.108

lnNonH -0.136 0.133
lnDrink -4.964*** 1.618

lnNonComp 0.063 0.402
lnWritten 0.045 0.286

lnCall 0.706 0.675
lnSPress -0.612** 0.335

lnNInterrupt -4.725*** 1.806
T 0.005 0.023

σ2 = σ2
v + σ2

u 0.018*** 0.003
γ = σ2

u/σ2 0.643*** 0.178
Log Likelihood 91.904

*p < 0.10; **p < 0.05; ***p < 0.01

Table 29: Model BEFF - Consistency in efficiency ranking

ID Firms BEFF1 BEFF5 BEFF8 Diff.
1 Anglian Water services Ltd 14 11 18 7
2 Northumbrian Water Ltd 6 9 16 10
3 Severn Trent Water Ltd 11 14 21 10
4 South West Water Ltd 21 19 20 2
5 Southern Water Services Ltd 19 20 22 3
6 Thames Water Utilities Ltd 17 18 17 1
7 United Utilities Water plc 22 22 19 3
8 Dwr Cymru Cyfyngedig 13 5 13 8
9 Wessex Water Services Ltd 10 8 15 7
10 Yorkshire Water Services Ltd 2 2 14 12
11 Bournemouth & West Hampshire Water plc 9 17 4 13
12 Bristol Water plc 15 16 5 11
13 Cambridge Water Company plc 5 7 1 6
14 Dee Valley Water plc 18 13 10 8
15 Veolia Water South East Ltd 1 4 2 3
16 Mid Kent Water plc 16 12 8 8
17 Portsmouth Water plc 20 21 12 9
18 South East Water Ltd 4 3 6 3
19 South Staffordshire Water plc 3 6 3 3
20 Sutton & East Surrey Water plc 8 1 9 8
21 Veolia Water East Ltd 7 15 7 8
22 Veolia Water Central Ltd 12 10 11 2

Min Difference 1
Max Difference 13
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Table 30: Model BEFF - Correlation between the rankings

BEFF1 BEFF5 BEFF8

BEFF1 1.000
BEFF5 0.803 1.000
BEFF8 0.579 0.434 1.0000

Table 32: Models B & BEFF - Consistency in efficiency ranking

ID Firms Ranking
Best Worse Diff.

1 Anglian Water services Ltd 6 18 12
2 Northumbrian Water Ltd 6 16 10
3 Severn Trent Water Ltd 11 21 10
4 South West Water Ltd 10 21 11
5 Southern Water Services Ltd 19 22 3
6 Thames Water Utilities Ltd 5 18 13
7 United Utilities Water plc 19 22 3
8 Dwr Cymru Cyfyngedig 1 13 12
9 Wessex Water Services Ltd 8 15 7
10 Yorkshire Water Services Ltd 2 14 12
11 Bournemouth & West Hampshire Water plc 2 17 15
12 Bristol Water plc 5 18 13
13 Cambridge Water Company plc 1 14 13
14 Dee Valley Water plc 10 19 9
15 Veolia Water South East Ltd 1 4 3
16 Mid Kent Water plc 8 19 11
17 Portsmouth Water plc 12 21 9
18 South East Water Ltd 3 21 18
19 South Staffordshire Water plc 1 6 5
20 Sutton & East Surrey Water plc 1 9 8
21 Veolia Water East Ltd 7 16 9
22 Veolia Water Central Ltd 6 12 6

Min Diff. 3
Max Diff. 18
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Table 33: Models B versus BEFF - Correlation between the rankings

B′
t2 B′

t3 B′
t4

BEFF1 - 0.535 -
BEFF5 0.399 - -
BEFF8 - - 0.447
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