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Abstract

This paper uses a Data Envelopment Analysis (DEA) and a Stochastic Frontier Anal-
ysis (SFA) to assess the relative technical efficiency of 177 decision making units in the
water supply sector in France in 2009. Water utilities can be directly managed by the
local authorities or contracted out and then managed by a private operator. The use of
a three-stage model mixing DEA and SFA enables us to dissociate managerial inefficien-
cies from the structural inefficiencies and statistical noise. Our results show that private
managers face more difficult environments. However, after having taken into account the
environmental variables, we find that private management remains on average slightly
less efficient than public management. An explanation to this performance gap can be
different resource management.
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1 Introduction
In industries such as energy, electricity, water and wired phone service, which are candi-
date for natural monopoly and where price schedules can have strong economic distortions,
there is a long-time debate on the issues of utility ownership, regulation and technical ef-
ficiency. Fabrizio et al. [2007] for example evaluate the long-term impact on the industrial
efficiency of privatization in electric utilities in the United States and find a significant
positive impact of privatization on cost efficiency. Davis and Muehlegger [2010] discuss
ownership as a determinant of price-efficiency - defined as marginal cost pricing - in the
United States natural gas industry. Water supply industry exemplifies these issues. In
industrialized countries, local authorities are responsible for water provision on behalf of
their citizens. The service can be managed in-house or be outsourced to a private op-
erator using a public-private arrangement. Whatever the management system, the local
authorities set the objectives - such as an uninterrupted service, resource conservation
and affordable prices - and have to enforce them.

Debates about the relative technical efficiency of private and public management fre-
quently arise. In France for example, in 2009, a year after the municipal elections, the
left-winger mayor of Paris decided not to renew the city’s water provision contract with
two private operators and to directly manage the public service. The municipality is now
in charge of providing water for the 2 million inhabitants of the city. In the beginning
of 2011, after a year of direct public management, the mayor announced that good per-
formances will lead to a decrease by 8% of the drinking water price in Paris from july
2011 on. Consequently, other French public authorities decided to directly provide water
to their users without contracting out with private operators arguing that public man-
agement is more efficient for public services. In other countries, we find the same debate
about public and private efficiency1.

In France, where there is no national regulator for water, water distribution is increas-
ingly coming under scrutiny by operators, policymakers, and researchers. Benchmarking
is a tool that is widely used in various countries and sectors to provide information and
incentives to utilities (see for instance Shleifer [1985]). While early applications of bench-
marking techniques have been practiced in the UK, most comparative studies between
public and private management in the French water sector such as Carpentier et al. [2006]
and Chong et al. [2006] use econometric methods. This is partly due to missing data
on costs, revenues and performance or quality indicators. Since the 2007 decree and
the implementation of the French National Agency of Water and Aquatic Environments
(ONEMA) the same year, the idea of a benchmarking of water services in France got
more popular2. Finding the regulating tools that will reduce the information asymmetry
between local authorities and water companies and promote the performance objectives

1See for example Bhattacharyya et al. [1995] on the USA, Estache and Rossi [2002] on Asia and Kirkpatrick
et al. [2006] on Africa, Garcia-Sanchez [2006] on Spain, Saal and Parker [2000] on Wales and England, Zschille
and Walter [2012] on Germany.

2The Fédération Nationale des Communes Concédantes et Régies (FNCCR), an association of municipally
elected persons who manage public services, has already financed two benchmarking studies on 31 voluntary
French water provision services using 2008 and 2009 datasets. By the same token, the Professional Association
for Water Companies (FP2E for Fédération Professionnelle des Entreprises de l’Eau), a group of private firms
operating in the water and sewage sector, also collects data and fund studies (Boston Consulting Group [2007])
on the relative performances of direct and delegated management.
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in the water industry has become a broadly shared goal. Assessing relative performances
can become a valuable regulatory instrument and begins to gain popularity in France.

This paper addresses the relative technical efficiency of 177 public and private water
suppliers in France by computing the best practice frontier of our sample. To identify
managerial efficiencies, we evaluate the ability of water producers to minimize their rev-
enues in the provision of a set of outputs, relative to the performance of other producers
in our comparison set. This intuition follows a standard result in the regulation of public
utilities (Coase [1946]) emphasizing that efficiency requires revenues covering operational
and capital costs with downsized margins in order to limit distortions such as the dead-
weight loss. However, efficiency depends also on the characteristics of the environment
in which production is carried out. Moreover, hazards such as “luck” must be unbundled
from managerial efficiencies. These effects are taken into account by considering a set of
environmental variables that can impact technical efficiencies.

Our empirical approach is different from previous studies on French data. To control
for hazards and structural differences, we mix a non-parametric approach (Data Envel-
opment Analysis, DEA) with a stochastic model (Stochastic Frontier Analysis, SFA) in
a three-stage approach introduced by Fried et al. [2002]. The three-stage model is the
following. In the first-stage, a conventional input-oriented DEA using only inputs and
outputs is applied to obtain initial measures of producer performance.3 In the second-
stage, we regress the slacks of the first-stage against the environmental variables and an
error term using a Stochastic Frontier Analysis (SFA). This method allows us to purge
the managerial inefficiencies from the possible environmental effects and statistical noise.
Finally, the third-stage re-evaluates producer performance and provides improved mea-
sures of managerial efficiency, since the data have been purged of both environmental
effects and statistical noise. Decision making units (DMU) are then ranked according to
their efficiency scores that ranges between 0 and 1. Mixing different benchmarking models
lead to a robust evaluation of the relative performance of utilities. Consistent results will
improve the relevance of benchmarking tools, the reliability of performance rankings and
finally, it will limit enforcement difficulties of the benchmarking.

Our results show that utilities under private management are on average more complex
to manage. Accounting for environmental variables increase efficiency by 0.1 under private
management while it only lifts up efficiency by 0.059 for public management. However,
even after having taken into account environment variables and statistical noise, private
management remains on average less efficient than public management. Public manage-
ment has an efficiency score of 0.883 against 0.823 for private management. As a summary,
even if the technical efficiency gap is narrowing after correcting for structural differences,
it remains significantly positive. This gap partly results from a widespread technical effi-
ciency of DMUs under private management.

This paper contributes to the literature on resource management and conservation. In
addition to traditional measures of technical efficiency, a measure of resource management
is considered to assess the performance of DMUs. As an output, the capacity of utilities to

3As noted by Berg and Lin [2008], an input-oriented DEA model is more realistic in the case of water
companies, because those utilities are supposed to meet demand (the output is exogenous). Therefore, input
quantities appear to be the primary decision variables related to firm efficiency.
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ensure water conservation is important because it usually warrants civil society, especially
as water is a scarce resource. Sustainable use of the resource is an important feature of
the public service as water shortage can be severe in some regions. The performance in
terms of water conservation is thus an important point to account for as a high level of
costs can be linked to a high performance in reducing leaks. Such a performance indicator
should be considered as an output as it has a direct impact on the cost structure of the
utility.

The outline of the paper is the following. Section 2 reviews relevant literature with
respect to the applied methodologies. Section 3 provides a general description of the
regulatory regime and the institutional framework for the French water industry. The
model specification is set out in section 4. Section 5 focuses on variables along with the
arguments that support their choice. Empirical results are presented and discussed in
section 6. A brief conclusion follows.

2 Related Literature
A large number of studies uses a benchmarking method to evaluate the efficiency of wa-
ter utilities in industrialized and developing countries. Alongside the empirical research
into the measurement of efficiency, an equal amount of attention has been directed to the
factors that can influence efficiency. One of the key purposes of studies on efficiency has
been to examine the role of ownership.

In industrialized countries, Bhattacharyya et al. [1995] using a translog variable cost
function on 221 US water utilities, find that US publicly owned water utilities are more
efficient. Garcia-Sanchez [2006] uses a four-stage approach to estimate technical and effi-
ciency of 24 Spanish municipal water supply agencies. Running three best-discriminating
DEA models with nearly identical efficiency scores, they find that only population density
- not ownership - has a statistical significant impact on inefficiencies. Using case studies
in various countries, Hall and Lobina [2004] show that private management often leads
to higher prices than public management. However, the authors do not give clear-cut
justifications to the price-gap between public and private management. The same impact
of private management on price is found by Carpentier et al. [2006] and Chong et al.
[2006] in France. Carpentier et al. [2006] used treatment effects on 3,782 municipalities in
2008 and found that private management is associated with higher prices because of more
complex water utilities. Studying 5,000 French municipalities in 2001, Chong et al. [2006]
find that private management is associated with a premium of 11 euros for a standard bill.

In developing countries, some studies find a slight positive impact of private owner-
ship on company efficiency. Kirkpatrick et al. [2006] use DEA and SFA to determine the
impact of ownership structure on efficiency performance of 110 water utilities in African
countries. Higher relative efficiency is shown for privately owned utilities, when using a
DEA method, whereas no statistically significant results for the impact of ownership is
found with SFA. Estache and Kouassi [2002] estimate a Cobb-Douglas production function
for 21 African water utilities for the period 1995 and 1997. In a second-stage, they use a
Tobit model to relate resulting inefficiency scores to governance and ownership variables.
Their results indicate that private ownership significantly decreases inefficiency. However,
their dataset contains only three privatized firms while corruption and governance seem
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far more important in explaining efficiency differences between firms than the ownership
variable. No significant differences between efficiency under public and private ownership
are observed by Estache and Rossi [2002], who estimate a stochastic cost frontier modeling
on data from 50 water utilities in developing and transition countries in the Asian and
Pacific region.

Instead of comparing public and private water utilities operating at the same point
of time, another body of work focuses on the impact of privatization on the efficiency
and productivity of the sector, mostly in the UK. Saal and Parker [2000, 2001] study the
privatization of water utilities in England and Wales in 1989. They expect privatization to
improve efficiency on the premise that it removes soft-budget constraints, eliminates any
political or special interest group interference associated with public ownership, exposes
utilities to the market for corporate control, and incentivises management and employ-
ees with performance pay structures and the market for managerial talent. Using cost
function and Total Factor Productivity (TFP) analyses to a panel of ten UK private com-
panies, the authors conclude that there is no statistically significant reduction in the trend
growth rate of total costs following privatization using cost function and no changes in
productivity after privatization using TFP.

One challenge with those studies is the appropriate recognition of the differences in
public and private strategies. While there is a clear similarity in the specification of inputs
and outputs, one might argue that private and public managers do not serve the same
goals. As noted by a recent paper using a DEA methodology by Zschille and Walter
[2012], private managers can be tempted by excessive pricing, leading to distortions (such
price distortions in regulated utilities are also discussed in Davis and Muehlegger [2010]
and Porcher [2012] for example) between producers and consumers, but also on connected
markets (here sanitation for example). While cost-based analyses focus on management
inefficiencies, we argue here that using revenues leads to a broader analyses coupling the
benchmarking of managerial inefficiencies and pricing strategies.

3 The Water Sector in France
3.1 The provision of water in France
In France, municipalities must provide local public services that have public good char-
acteristics. This provision can be made by the municipality alone or by a group of mu-
nicipalities that collectively engage to provide one or several public services. As there is
no national regulator for these services, local public authorities define the general prin-
ciples governing those services on behalf of their citizens: they monitor prices, control
entry and exit of firms into the market, organize competition and ensure uninterrupted
service. Regulation has thus been replaced by a contract in the case of a private operator
or a decision of the municipality board in the case of public operation. In the case of
delegated management, public authorities face the classic regulatory problem: they are in
an information asymmetry position and have few tools to carry out their essential tasks.
Water supply is one of these public services. Water supply is a broad subject implying
four public services. On the one hand, water provision refers to the production and the
distribution of water; on the other hand, sewerage implies wastewater collection and treat-
ment. Due to potential scope economies, water provision and sewerage can be run by the
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same operator4 but through two separated contracts.

Furthermore, rules have been defined to ensure that standards are respected during the
operation to limit the potential opportunistic behavior of operators. These rules support
water quality, duration of contracts and information about management and provision
quality. In the case of water quality, a precise definition of more than 60 verifiable quality
parameters has been set by the 1992 water act to ensure that water services, would they
be private or public, respect quality standards. Consequently, water quality is respected
and is rarely below a 95% score of conformity to the standards of the microbiological
analysis. Moreover, limits on duration have been implemented and management and
provision information is now required to be publicly reported. To ensure that competition
between operators arises, the “Barnier Law”(1995) gives a clear limitation to the duration
of contracts and includes an automatic renegotiation of the contract every five years.
To struggle against information asymmetries, the executive power passed a decree in
2007 that forces municipalities and communities to provide 14 performance indicators
in the mayor’s Annual Report on Prices and Service Quality (RPQS in French). These
performance indicators and other data about water and sewerage services are collected by
the French National Agency of Water and Aquatic Environments (ONEMA in French) to
provide data in order to inform users and citizens about their water services.

3.2 The institutional framework of water industry in France
In France, each local public authority may choose a particular contractual form from
the differentiated set of alternatives. Although some municipalities manage production
through a direct public management and undertake all operations and investments needed
for the provision of the service, the hiring of a private operator, independent of the local
government, to manage the service and operate facilities is common.

In the latter case, the local public authority may choose to involve an outside firm
in the operation of the service choosing a delegated management contract.5 There are
two types of contracts. These contracts are characterized by shared investments with the
public authority to maintain the network and financial compensation directly through
customer receipts. These contracts give companies incentives to reduce costs, and com-
panies share risk in exchange for greater decision rights and claims on revenues.

The institutional framework to select the private partner is the following. Since the
“Sapin law” (1993), if the public authority chooses a lease or a concession contract, it
selects its partners in two steps. First, the public authority launches a classical invitation
to tender that is open to all interested private water companies. Second, there is a
negotiation phase between the public authority and potential entrants that it shortlisted.
At the end of the negotiation, the public authority chooses its final partner for the duration
of the contract. The selection of the private company follows the intuitu personae principle
according to which the municipality or the community sets a list of criteria to select the

4An official report by Dexia, a French financial intermediary, states that 63% of French medium-sized cities
contract out the services of drinkable water treatment and distribution and 58% also contract out their sewerage
services. It is however difficult to have a precise estimation of how many municipalities and communities have
contracted out both services with the same operator.

5Our sample has only delegated management contracts.
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firm that is considered as the best partner.

4 Model Specifications
4.1 Methodology
In 1957, Farrell introduced a data envelopment methodology6 for the measurement of eco-
nomic efficiency. From an input-oriented perspective7, technical efficiency is associated
with the ability to produce on the efficiency boundary of the production possibility set
given a predetermined quantity of output. DEA is useful because the researcher does
not need to make any assumption about the functional link existing between inputs and
outputs.

The basic DEA model described evaluates economic efficiency using traditional input
and output variables but it does not consider the potential impact that environmental
factors may have on producers’ performance measurement. Several models have been
developed in order to incorporate environmental effects into a DEA-based performance
evaluation.8. One possible approach is to include the environmental variables directly into
the linear programming formulation either as non-discretionary inputs, outputs or neutral
variables, according to the circumstances (Ferrier and Lovell [1990]) This requires that
further linear programming constraints be included. As a consequence, only few environ-
mental variables can simultaneously be taken into account to avoid excessive restriction of
the reference set. Contrary to the DEA approach, the stochastic frontier analysis (SFA)
accounts for statistical noise and environmental variables in measuring efficiency. How-
ever, this type of analysis demands important datasets on inputs costs such as labor costs,
capital costs or energy costs.

A possible approach to better evaluate producer performance is to adopt a multi-stage
DEA analysis. This ensures that the comparison is made among units which operate under
similar environmental conditions, thus eliminating the environmental effects from the sin-
gle company’s performance assessment. Another group of models is based on two-stage
mixed approaches which imply a regression-based second stage. These models involve
solving a DEA problem in a first stage using traditional input and output variables in
order to calculate initial efficiency measures. The efficiency scores are then regressed using
ordinary least squares (OLS) upon a set of environmental variables in a second stage, the
objective being to determine the signs, as well as the significance of the coefficients of the
environmental variables (see for instance Bhattacharyya et al. [1997]) by adjusting the
first stage efficiency scores.

For their part, Fried et al. [1999] introduced a three-stage approach where the initial
DEA efficiency scores based exclusively on output and input are then regressed in the

6For a comprehensive description of DEA models, see Charnes et al. [1978], Thanassoulis [2000a,b], Charnes
et al. [1994] and Cooper et al. [2004].

7In principle, economic efficiency may be measured using an input or an output-oriented approach. In the
first case, the input use is minimized given a certain amount of output, while in the second the output is
maximized for a given level of inputs. Generally, the adoption of an input-oriented framework is preferred for
public utilities as demand may be seen as exogenous.

8See Coelli et al. [1998] for details on these models.
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second stage using a Tobit upon a vector of environmental factors. Predicted values of
the impact of the environmental effects can then be computed. In the third stage, the
original data are adjusted to account for the effect of environmental variables and DEA
is re-run in order to obtain new DEA scores unaffected by environmental characteristics.
We should underline that Tobit regressors using efficiency scores as dependent variable
can give biased results for at least two reasons. The first one is that the dependent
variable - the inefficiency remaining from the first stage - is purely constructed. The
second reason is linked to the first one. As technical efficiency scores are bounded by 0
and 1 by construction, the variable does not capture all the variance of the existing inputs.

Both OLS and Tobit are however unable to account for the role of statistical noise
on efficiency. However, as noted by Erbetta and Cave [2007], both these approaches are
deterministic and so they fail to take into consideration the effects of statistical noise on
efficiency performance. In order to embody the action of both environmental variables
and statistical noise upon efficiency, we adopt, like Erbetta and Cave [2007] a three-stage
approach proposed by Fried et al. [2002]. This mixed approach which combines DEA
and SFA makes it possible to obtain a measure of the intrinsic managerial performance,
separately both from the impacts of the environmental characteristics in which production
takes place and from random noise. As SFA is regression-based, it can isolate managerial
inefficiencies from environment effects and statistical noise in the second stage. In the
last stage, producers’ inputs are adjusted to account for the environmental effects and
statistical noise identified in stage two and DEA is run again to re-evaluate producer
performance.

4.2 Model set-up
The initial producer performance evaluation is conducted using a conventional input-
oriented DEA analysis, using input quantity data and output quantity data only. The
basic DEA model can be expressed as the following linear programming problem:

minθ,λ θ
s.c −yi + Y λ ≥ 0

θxi −Xλ ≥ 0
λ ≥ 0
eTλ = 1

(1)

with y > 0 is a producer’s i M ×1 vector of output; x > 0 is a producer’s N ×1 vector
inputs used by the DMU i ; Y = [y1, ..., yI ] is a producer’s M × I matrix of outputs of the
I DMUs in the comparison set; X = [x1, ..., xI ] is an N × I matrix of inputs used by the I
DMUs of the sample; λ = [λ1, ..., λI ] is an I × 1 vector of intensity variables; e = [1, ..., 1]
is an I × 1 vector for the I DMUs of the sample; 0 ≤ θ ≤ 1 is an efficiency score measure.

The first step thus consists in solving program (1). However, actual technical effi-
ciencies are likely to be attributable to some combination of managerial inefficiencies,
environmental effects, and statistical noise, e.g. “bad luck” or a biased error term, and it
is desirable to isolate the three effects.

In a second step, the total excess (radial plus non-radial) of inputs (slacks) computed
in the first stage (noted Sni = xni − Xnλ ≥ 0) are regressed against the environmental
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variables adding an error term, using the SFA method. Sni is thus the excess of inputs
resulting from the usage of input n by the DMU i. Xn is the nth column of X and
Xnλ represents the optimal projection xni, i.e. the value that the input should reach
so that the DMU is considered to be efficient. The belief from the DEA first-stage is
that total slacks reflect initial managerial inefficiency. However, we interpret these slacks
more broadly, as being composed of three effects: environmental influences, managerial
inefficiencies, and statistical noise arising from measurement errors in input and output
data used to generate the first stage slacks. The main advantage of using SFA rather than
a standard econometric method such as Tobit or OLS in the second-stage is that its error
term is asymmetric. Consequently, it allows to dissociate the environmental variables
(here the regressors) from managerial inefficiencies (the one-sided error component) and
from statistical noise (the symmetric error component). Independent variables are K
environmental variables : zi = [z1i, ..., zKi], i = 1, ...I. The N regressions (one for each
input excess) are written as follows, with n = 1, ...N and i = 1, ...I :

Sni = fn(zi;βn) + νni + uni (2)

fn(zi;βn) represents the frontier of inputs slacks. The βn are the estimated parameters
by the software. νni measures the statistical noise whereas uni ≥ 0 stands for the manage-
rial inefficiencies of the DMU. The stochastic frontier is measured by Sni = fn(zi;βn)+νni.
As uni ≥ 0, this stochastic frontier represents the minimum slacks that can be reached
by the DMUs. All inputs slacks above this frontier will be considered as managerial in-
efficiencies of DMUs. The idiosyncratic error term vni is independently and identically
distributed vni ∼ N(0, σ2

vn), while uni ∼ iid N+(µn, σ2
un) (zero-truncated normal law).

vni and uni are indenpendently distributed between them and regarding regressors. The
N regressions (2) are estimated using a maximum likelihood. For each regression, param-
eters to be estimated are (βn;µn;σ2

vn;σ2
un). As noted by Fried et al. [2002], there are at

least two virtues of using SFA in the second-stage. First, it is not necessary to assume
the direction of the impact of any environmental variable on producer performance prior
to the analysis. Second, the framework permits the environmental variables, statistical
noise and managerial inefficiency each to exert different impacts across inputs.

We now consider how to use the results from the second-stage to adjust producers’
inputs for the variable impacts of different operating environments and random statistical
noise. The essence of the adjustment lies in the fact that producers operating in relatively
unfavorable environments, and producers experiencing relatively bad luck, are disadvan-
taged in the first-stage DEA performance evaluation that does not take these factors into
account. One way to level the playing field is to adjust upward the inputs of producers
who have been advantaged by their relatively favorable operating environments or by their
relatively good luck. Producers’ adjusted inputs are constructed from the results of the
second-stage SFA regressions by means of:

xAni = xni +
[
maxi

{
ziβ̂

n
}
− ziβ̂n

]
+ [maxi {ν̂ni} − ν̂ni] (3)

with n = 1, ...N and i = 1, ...I. xAni is the adjusted input ; xni is the observed input in
the dataset.

[
maxi

{
ziβ̂

n
}
− ziβ̂n

]
put all DMUs in the same operational environment.

[maxi {ν̂ni} − ν̂ni] put all DMUs in the unluckiest environment. Corrections differ across
utilities and the considered input.
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Therefore, from the Ê [νni/νni + uni], we derive the statistical noise:

Ê [νni/νni + uni] = sni − ziβ̂n − Ê [uni/νni + uni] (4)

with n = 1, ...N and i = 1, ...I. This equation gives the conditional estimators for
the νni included in equation (3). β̂n is useful to estimate the contribution of each en-
vironmental variable observable for the slacks, while parameters (µn;σ2

vn;σ2
un) allows

us to separately estimate managerial inefficiencies and statistical noise slacks. When
γn = σ2

un/(σ2
νn+σ2

un)→ 1, managerial inefficiencies have a stronger effect than statistical
noise, while it is the contrary when γn → 0.

In the third-stage, we repeat stage 1 with the adjusted inputs that take into account
the observable environmental variables and statistical noise. The output of stage 3 is
a DEA-based evaluation of producer performance couched solely in terms of managerial
efficiency, purged of the effects of the operating environment and statistical noise.

4.3 Outliers’ detection
In DEA models, the efficiency of a DMU is evaluated relatively to a reference set comprised
of all sample observations, including itself. As most efficient DMUs drive the efficiency
frontier, it is sometimes necessary to peel off a fraction of the observations to obtain more
reliable production frontier estimates. Some of the DMUs might be considered as outliers
as they drive upward the efficiency frontier and thus drive downward the average score.
DEA is thus sensitive to outliers or extreme observations in the data and a profound
validation of the data is necessary.

A first attempt for identifying outliers has been made by Timmer [1971] who suggests
discarding a certain percentage of efficient observations from the sample and re-estimating
the production frontier using the remaining observations. All the difficulty lies in the ca-
pacity to correctly select the outliers. Banker and Gifford [1988] use another procedure
based on contamination of efficiency scores by super-efficient outliers. For each observa-
tion i, the idea of the super-efficiency approach is to solve the linear program given in
equation 1 by only using all observations k = (1,...,K) other than i, i.e. k 6= i as possible
peer units. The observation i is not included in the reference set and can have a score
greater than 1, i.e. considered as super-efficient, as it can not be a reference for itself.
This method is useful to detect outliers that do not stand at the frontier. The drawback
is that it needs to repeat I-1 DEA linear programming which is inappropriate for large
samples.

In this paper, we use a simple method to detect outliers (see Tran et al. [2010]). We
compute for each observation two simple indicators. First, we consider the number of
times that an observation is used as a reference9. Second, we compute the cumulative
weight of efficient DMUs across all constructed efficient sets. As we use a variable returns
to scale (VRS)10, the frontier consists in a convex combination of inputs and outputs
of the most efficient DMUs. An easy way to detect outliers is then to use a graphical

9Indeed, the DEA method gives for each inefficient DMU the DMUs that are used as references to compute
its technical efficiency. Efficient DMUs, i.e. those which determine the efficiency frontier, can thus be quoted
as references for inefficient DMUs.

10See Banker et al. [1984] for a detailed explanation. The VRS hypothesis is the less restrictive hypothesis on
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representation of the number of times that a DMU is used as a reference and the cumula-
tive weight of the observation across the efficient sets. We then drop outliers and re-run
the first-stage until the results are stable. Using this simple method, five observations
are dropped (one under public management and four under private management) after
having repeated the process three times.

Figure 1 in the appendix depicts the link between the number of times a DMU is used
as a reference and the sum of weights for the first round of outliers detection. All efficient
DMUs are represented in this graph. As one can see, two outliers are easily detected. As
there are no clear rules for defining what is an outlier, we decided to graphically select
outliers and not to drop more than two variables at each stage. In this case, DMUs A
and B are identified as outliers and are then removed from the dataset. In the following
section, we present the dataset.

5 Data
A data collection has been launched to get the 325 biggest French water services 2009
Annual Reports on Prices and Service Quality (RPQS). When we could not access the
Annual RPQS, we used the 2009 Delegate Annual Reports, a confidential compulsory an-
nual report made by the firm for the municipality. Like other studies, we focus only on
the water service and we do not consider the sewerage one for two reasons. First, a bench-
marking on sewerage activities would be constrained by a lack of comparators. Second,
we lack data on sewerage services that are sometimes managed by another operator or
under another organizational form. We managed to get 297 reports.

One problem that arose during data collection is that reports do not systematically
present data in the same way. For example, performance indicators can be computed at
city-level, at contract-level or at territory-level. In the latter case, we have information
for a bunch of contracts covering several neighbor cities and managed by the same firm.
The main criterion to distinguish producers is the contract-level approach. However,
sometimes we only have data for the main city of the contract or for the bunch of connected
contracts of a single firm. More complicated is the scenario when we have data for the
territory with different firms and organizational forms to manage the local utilities. In
this case, we considered the utility as public (private) if a majority of connections are
managed by a public (private) operator. Because of missing data, our unique sample for
this study - OSEA - is made of 177 observations before outliers’ detection. In the following
subsections, we present the selected variables and their construction when necessary.

returns to scale. The use of the constant returns to scale (CRS) specification when not all DMUs are operating
at the optimal scale will result in measures of relative efficiency which are confounded with scale efficiencies.
The use of the VRS specification enables to measure relative efficiencies devoid of these scale efficiencies effects.
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5.1 Dependent variables
We use revenues as a proxy for costs.11 By including the utility’s revenues as an input,
we first assume that revenues reflect operating and capital costs plus a mark-up. From
the regulator point of view, tariffs should cover the monopoly’s costs and to avoid market
distortions resulting from excessive margins. Excessive revenues can reveal managerial
inefficiencies if they are not used to cover costs. Moreover, using revenues is meaningful
as the price of water must cover the production costs, the so-called “water pays water”
principle: under private management, the price is jointly set by the municipality and the
firm, following operator costs; under direct management the price is decided by the munic-
ipality following its costs. Following the European water framework directive (Directive
2000/60/EC, article 9), revenues must cover all material costs, depreciation and labor
costs. Therefore, a water provision unit will be more efficient the lower the revenues for a
given level of outputs. The advantage of such a revenue yardstick approach is that there is
no need to measure operational and capital costs. Such an exercise can be hazardous with
data coming from publicly and privately managed utilities as accounting rules differ. For
example, depreciation rules are not the same under public and private accounting rules
which makes impossible the comparison between costs in public and private management.
Furthermore, documents used for the coding usually report detailed revenues but rarely
write costs. Considering revenues as thus two advantages: first, revenues are comparable
from an utility to another; second, it is a good proxy for costs as by construction, revenues
must cover costs and can include a mark-up for the operator.

Utilities’ revenues mainly depend on the volumetric charge and the fixed-fees paid by
consumers but it also includes other products and revenues from works on the networks
and other products. In France, the price of water is divided between a fixed-fee and a
variable part depending on the consumption pattern of the user. A part of the profit
coming from water sales can be paid back to the community or to the municipality in
accordance with the contractual design. The final price paid by consumers also includes
several taxes transfered to the public water agencies and to the State. As the extra-
revenues from works on the networks and other products, these taxes do not reflect the
service’s performance. We thus use as an input revenues of the water service coming from
the billing of consumers excluding revenues coming from other products, works on the
networks, product of public taxes and exports to other municipalities. The remaining
part represents the revenues from the water sales that are shared between the private
water company and the public authority. These “net” revenues cover costs and include a
margin captured by the private firm when the management is private and by the public
authority when the management is public.

5.2 Physical outputs
In order to compare water provision units’ performances, three traditional physical outputs
used in the literature are considered: billed water in cubic meters, number of customers
and the pipes’ length in kilometers. These three variables actually represent the three
professions of water operators: producing and distributing water, managing customers’

11Most of benchmarking studies in the water industry use operating costs as the dependent variable (see for
instance Thanassoulis [2000a,b] in the case of water companies in England and Wales, Corton [2003] for water
companies in Peru and Corton and Berg [2009] for Central American water utilities). A recent study by Zschille
and Walter [2012] uses revenues as a proxy for price to apply a consumer perspective in regulation.
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service and managing pipe maintenance. They are thus proxies for the amounts of oper-
ational costs and capital costs.

Billed water is a conventional measure of the water production activity and is repre-
sented, in our database, by the total volume of water delivered and billed to households
and non-households customers. We do not take into account exports neither in billed
water nor in revenues. The number of customers is also a commonly used output (see for
instance Saal and Parker [2000]). The number of customers in our database represents
the number of properties connected for water supply. In French urban areas, a connection
can represent a whole building or a part of the building. Several studies underline the
relevance of combining both the volume of water billed and the number of customers (Saal
and Parker [2006], Thanassoulis [2000a]). For instance, Saal and Parker [2006] justify this
specification by the fact that the two tasks have different characteristics and heteroge-
neous marginal costs. Moreover, previous researches (see for instance Garcia and Thomas
[2001]) have suggested that because of the cost of maintaining network connections, the
number of customers is an important determinant of water industry costs and revenues.
According to Erbetta and Cave [2007], this specification is a proxy for the scale of the
distribution activity. For Thanassoulis [2000a], combining billed units and the number
of connections is recommended to better account for utilities with numerous but rather
low-consumption customers.

Furthermore, water suppliers may have different revenues depending on the length
of mains (Corton and Berg [2009]). Therefore, as regards the outputs commonly used
in benchmarking studies and following for example Thanassoulis [2000a,b]) and Garcia-
Sanchez [2006], we add the length of mains as an output. Note that the Ofwat12 also
uses this variable as an output to determine the relative efficiency of water and sewerage
companies. Thanassoulis [2000a,b] argued the length of mains reflects the geographical
dispersion of connections. For Berg and Lin [2008], this variable is an indicator of capital.13

These explanatory variables are positively correlated with the revenues.

5.3 Quality output
In addition to traditional measures of technical efficiency, service quality is a performance
indicator that warrants attention, since one important characteristic of water companies
is that they must comply with quality standards. To measure performance, we use a
variable that gives us information about environmental performance and network quality.
This quality indicator is an important outcome as private operators usually justify their
higher prices by higher quality standards and a better consideration for water conserva-
tion policies.

To measure the quality of resource management, we use network performance mea-
sured as the ratio between billed water and the sum of billed water and water losses. Some

12The Office of Water (Ofwat) is the regulatory institution in charge of the water and sewerage sector in
England and Wales.

13The length of mains is often considered to be an output in benchmarking studies. However, in some studies,
this variable is considered as a proxy for the cost of capital, being therefore included as an input variable. For
our part, we consider as being more realistic to include this variable as a physical output, since otherwise, the
model will recommend the water services to minimize the length of mains used, which is not applicable in facts.
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studies use water losses to take account for deficiencies in either operational or commer-
cial practices. Indeed, as argued by Corton and Berg [2009], water losses may reflect a
cost trade-off between increasing water production and repairing network leaks to keep
up with water demand. Hence, the idea is that, to satisfy demand, managers may find it
more costly to repair leaks and to control water losses than to increase water production.
For Garcia and Thomas [2001], water network losses are considered as a non-desirable
output produced jointly with the service of water delivery. For their part, Coelli et al.
[2003] regard water losses as an indicator of the technical quality of service. Network
performance is a good quality indicator for at least two reasons. First, dealing with leaks
implies very costly in human capital investments as pipes are mostly are repaired using
human workforce. Second, water conservation has been at the center of the European
water policies in the last twenty years.

One might argue that we could use some other variables to measure quality such as
water quality or consumers’ satisfaction for example. In some developing countries, ser-
vice coverage, service continuity or the percentage of water receiving chemical treatment
are adequate variables to measure water quality (see for instance Berg and Lin [2008]
in the case of Peru or Corton and Berg [2009] for the Central American water utilities).
In contrast, in developed countries where water services cover nearly all the population,
alternative measures of quality are required (see for instance Saal and Parker [2000, 2001])
and should focus on water conservation policies.

Regarding drinking water quality, we could have retained compliance with microbi-
ological standards measured as the percentage of successful tests (see for instance Saal
and Parker [2000]). It is sometimes considered as an “environmental” advantage for the
supplier, since the drinking quality is often regarded as being closely linked to the pro-
duction of drinking water from groundwater as the source is less polluted. However, a
higher quality of drinking water may also come from DMUs’ efforts to achieve the quali-
tative criteria. In this case, a positive impact on revenues is expected. In our sample, the
drinking water quality never exceeds the 5% of non-compliance and variance is less than
1% for the full-sample. Because of this low variance, we prefer to consider network per-
formance rather than microbiological quality. In our opinion, it is a far stronger indicator
to better understand differences in performance. In order to take into account the need
for good water quality and its costs, we controled for some characteristics of water in the
environmental variables.

5.4 Environmental Variables
The efficiency of a firm could be affected by exogenous conditions that are not under the
direct control of managers. Environmental variables have been included because they may
influence the technology under which water utilities operate and may account for exoge-
nous differences in operating environments experienced by each firm (see Bhattacharyya
et al. [1995], Garcia and Thomas [2001] and Filippini et al. [2008] among others). These
variables account for the different characteristics of networks and areas, thus controlling
for heterogeneity among DMUs. The environmental variables used are consistent with
many of the empirical studies mentioned.

We use five environmental variables that are common to the literature (see Erbetta
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and Cave [2007] for instance). The source of water is a proxy not only for the complexity
of service provision, but also the level of specific investments needed to operate the service,
an important variable from a transaction cost perspective (Williamson [1999]). Indeed, as
noted before, a better quality of drinking water may be due to a higher share of ground-
water sources for an operator. The source of water determines the type of treatment as
the quality of underground water is generally more stable over time, reducing uncertainty
about the evolution of the kind of treatment over the life of the contracts.

Moreover, we use two variables referring to water treatments. A dummy equals 1 if
water treatment is complex and 0 either. A complex treatment is, according to the Health
ministry, an A3-type treatment, i.e. an advanced physical and chemical treatment and
a disinfection in several steps. Non-complex treatments such as A1 and A2 only include
physical and chemical treatment plus a simple disinfection. We also account for the use of
multiple or mixed treatments. Indeed, some utilities have multiple sources of water and
thus need mixed treatments or to invest in particular factories. We thus insert a dummy
that equals 1 if the treatment is mixed and 0 otherwise.

Extensive literature has included measures of the density of operations as an important
determinant of water industry costs (see for instance Bhattacharyya et al. [1995], Estache
and Rossi [2002]). Therefore, the water service density or, in other words, the population
density is included in our specification and is defined as the ratio between inhabitants
served per kilometer of water main (i.e. the ratio between the population provided with
water and the length of mains). For Erbetta and Cave [2007], providing service to a more
concentrated population is, generally, cheaper than providing a dispersed population. The
idea is the following: the higher the dispersion of the network, the more maintenance and
energy are needed. However, the population density may have ambiguous effects on cost
inefficiency for two reasons. On the one hand, it may be more expensive to supply water to
dispersed customers. On the other hand, a higher density may create congestion problems.

Some water services can be subject to a high volatility of demand due to seasonal
variations in the population that might necessitate overcapacity in order to satisfy peak-
load demand. This is the case of touristic areas that have higher demand during national
holidays. A dummy variable for the touristic nature of the service takes the value 1 if
the service area is considered to be touristic according to the French National Bureau of
Statistics (INSEE) classification and 0 otherwise.

Moreover, small towns have fewer internal resources either to produce water them-
selves or to pay external experts and to monitor and control private operators. At the
same time, private operators have little incentive to operate in small towns. This may
explain the tendency of small towns to create pools, which then provide water directly
through a joint bureau of outsource. A dummy equals 1 if the municipality provides water
jointly with other local authorities, 0 otherwise.

Descriptive statistics are presented in Table 1 such as to compare public and private
management at the DMU-level. Table 1 is divided in two parts. The left part shows the
descriptive statistics for public management and the right part shows descriptive statistics
for private management. As we can see, private operators get on average higher revenues
which is consistent with the fact that they have on average higher outputs, including higher
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network performance. The impact of the environmental performances on inefficiencies is
not predetermined. However, we observe overall that private management is associated
with higher density, interconnected networks and more complex treatment while public
management is associated with ground water, mixed treatment and touristic areas.

5.5 Representativeness of the Sample
In order to ensure the validity of our results for the whole main French water utilities, we
need to compare the dataset of this paper regarding the only representative dataset on
French water utilities, the IFEN-SOeS dataset. IFEN-SOeS is a nationally representative
dataset of water utilities in France that has been collected four times (1998, 2001, 2004
and 2008) and contains a range of information on water demand and supply. As IFEN-
SOeS stops in 2008 while OSEA is collected for 2009, the comparison will especially be
on the efficiency difference between the two organizational choices. Table 5 in appendix
shows the distribution of public and private management in IFEN-SOeS and OSEA and
the difference in prices for a standard bill (i.e. a bill for a household of three persons).
As we have no data on revenues or costs in IFEN-SOeS, we picked prices as a proxy for
revenues. Revenues are indeed highly correlated to consumption and connection to the
network. OSEA over-represents directly managed utilities but gaps between public and
private efficiency, measured by price, remain the same. In the two datasets, we observe
a 20% gap between public and private management in terms of price. Overall, we con-
clude that our dataset is representative of the DMUs serving more than 15,000 inhabitants.

We also look at the representativeness of the dataset in terms of its covering rate
of the national population, customers or billed water. Despite missing data concerning
big French cities such as Lille, Lyon, Paris and Toulouse, our dataset covers 17.5 million
inhabitants, 4.5 million customers and more than a billion of cubic meters billed. We
thus have utilities that represent 30% of the population and a quarter of total water
consumption in France. In the next three sections, we describe the variables used to
assess efficiency.

6 Empirical Results
6.1 First-Stage Results
A summary of the first-stage results of our model is presented in Table 2. Table 2 details
efficiency scores for public and private management and for the full-sample. It also re-
ports the number and the share between parentheses of efficient DMUs. The last two lines
report the mean input slacks and its standard deviation. The mean technical efficiency
score equals 0.754 which indicates that the average company could become efficient by
reducing its revenues by almost 25%, still producing the same amount of outputs. Public
management has an efficiency score of 0.825 while private management has an efficiency
score of 0.724. The minimum value is 0.373 for private management and 0.450 for pub-
lic management, indicating that there are substantial differences among water services.
The ranking is computed using the efficiency score, the number of times an observation
appears during the construction of the DEA frontier and its cumulative weight in the
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construction of the frontier.14 Even if private management is less efficient on average, it
provides a larger stock of DMUs for the construction of the frontier. It has thus a larger
impact in absolute value but it is relatively less performing than public management. For
the full sample, 18% of DMUs are efficient but 23.53% of publicly managed utilities and
15.70% of private utilities.

We finally report the input slacks and its standard deviation. As we expect regarding
the efficiency score, private managers have to endorse larger revenue cuts than public
managers to be efficient. These input slacks will be used to re-adjust inputs for the final
stage.

Table 2: Public vs. Private Management - 1st Stage
Public Management Private Management Full Sample

Score Score Score
Mean 0.825 0.724 0.754

Standard Deviation 0.144 0.188 0.182
Min 0.450 0.373 0.373
Max 1 1 1

Best Rank 3 1 -
Efficient DMUs 12 (23.53%) 19 (15.70%) 31(18.00%)
Observations 51 121 172
Input Slacks 873.256 1293.377 1168.806

Standard Deviation 1351.338 1659.967 1582.612

6.2 Second-Stage: SFA and Input Adjustment
Table 3 summarizes the first step of the second-stage which consists in a SFA regression
of inputs versus the environmental variables. Results suggest that the operating environ-
ment does exert a statistically significant influence on water supply performance. As we
can see, the coefficients are all positive and mostly significant. To better understand the
results, it is easier to start with an example. Ground water has a positive and significant
impact on input slacks, meaning that it has a significant negative impact on efficiency.
Being localized in a touristic area, complex and mixed treatments, population density and
interconnected utilities all have a positive impact on inputs slacks, i.e. on inefficiencies,
and thus a negative impact on efficiency.

Results in Table 3 also shed light on the contribution of statistical noise to DMUs’
performance. The γ is computed as the ratio between σu2 and (σv2 +σu2). γ lies between
0 and 1. The closer it is to 1, the less statistical noise there is in the model. As γ tends
to 1, statistical noise is very low in our model. This suggests that the environmental
variables explain virtually all of the variation in input slacks.

In a second step of this second-stage, we use the results from the SFA to adjust the
input following Fried et al. [2002] described above. As a result, we will put all the DMUs

14For confidentiality reasons, the ranking cannot be published.
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Table 3: Second Stage: Input Slacks versus Environmental Variables
Variables Input Slacks
Ground Water (=1) 286.238***

(25.353)
Touristic Area (=1) 192.449***

(42.449)
Mixed Treatment (=1) 291.899***

(53.388)
Complex Treatment (=1) 17.763

(65.637)
Population density 1.460***

(0.068)
Interconnected (=1) 233.831**

(112.929)
Constant -1299.06***

(104.757)
γ 0.999
Log-Likelihood -1452.255
Standard errors in parentheses with *** p<0.01, ** p<0.05, * p<0.1.

in the worst production environment by correcting the input upward.

6.3 Third-Stage Results
Table 4 summarizes the differences in performance results between public and private wa-
ter companies after having adjusted the input. The table shows the results separately for
public and private management. The mean technical efficiency score equals 0.841 versus
0.754 in the first-stage. The average correction is thus 0.087. This supports that some
DMUs that received relatively low initial performance evaluations did indeed have a valid
complaint, due to their relatively unfavorable operating environments or their relatively
unfavorable extenuating circumstances. DMUs under public management are adjusted
upward by 0.059 while DMUs under private management are adjusted upward by 0.100.
Private management is thus not as poorly managed as the first-stage indicated. The min-
imum is adjusted upward also from 0.373 to 0.496. Accounting for different operational
environments is thus helpful to correct for efficiency. Overall, we now have 30 efficient
DMUs against 31 in the first-step. Some DMUs were unfairly considered as being efficient
in the first-step while some others were unfairly considered inefficient. There is thus an
efficiency gap of 6% between public and private management in the French water supply
industries.

However, the Spearman correlation test of the first and the third steps equals 0.890
and is significant at the 5% threshold. The Kendall correlation test - which depends upon
the number of inversions of pairs of objects which would be needed to transform one rank
order into the other - is 0.700. These tests indicate that results from the first and third
steps are highly correlated. It also means that DMUs that received relatively high (low)
initial performance evaluations did so in relatively favorable (unfavorable) operating envi-
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ronments and circumstances. Accounting for contextual variables renders the results more
robust but does not fundamentally change the relative DMUs’ managerial performance.

Table 4: Private vs. Public management - Final Results
Public Management Private Management Full Sample

Score Score Score
Mean 0.883 0.823 0.841

Standard Deviation 0.112 0.132 0.129
Min 0.564 0.496 0.496
Max 1 1 1

Best Rank 1 3 -
Efficient DMUs 13 (25.49%) 17 (14.05%) 30(17.44%)
Observations 51 121 172

Average Correction 0.059 0.100 0.087

Graph 2 in appendix depicts the link between billed water and technical efficiency by
organizational form. As we can see, there is no clear link between the size of the market
and technical efficiency, whatever the management type. For easiness in reading, we ex-
cluded utilities billing more than 40,000 thousand cubic meters in 2009 (a single utility -
which was moreover efficient - has been dropped). However, we notice a greater level of
dispersion of technical efficiency for private management.

The ranking follows a simple rule (see Fried et al. [2002]). DMUs are ranked regarding
i) their efficiency scores, ii) the number of times they are used as references for defining
the frontier and iii) the cumulative sum of their weight in defining other DMUs’ scores.
A lot of utilities are close to the efficiency frontier as 66 DMUs have efficiency scores
larger than 0.9. While private operators are under-represented in the efficient DMUs,
they are largely represented in the less efficient DMUs as we can observe in Graph 2.
For example, if we only consider utilities with efficiency scores below 0.7, we find that 23
out of 26 DMUs are under private management. The average efficiency gap between pub-
lic and private management results from this higher dispersion of utilities’ efficiency score.

Such a dispersion in privately managed utilities can be explained by several factors.
First, private operators can have differentiated strategy depending on some structural
aspects of the municipality. Moreover, municipalities themselves may have different ca-
pabilities in negotiating contracts before and after the bidding process. Differences in
performance can thus appear as differences in capabilities to negotiate contracts or by the
fact that differences in complexity are not completely purged. Other unobserved factors
- for example altitude - can have also an impact on performance.

Particular attention could focus on the issue of endogeneity of the management choice
in the water sector and its impact on the relative efficiency of water services. Indeed, ig-
noring the endogeneity of the choice between public and private management may bias the
efficiency measurement of in-house and delegated services. For example, poorly perform-
ing utilities can induce citizen pressure for reform and the selection of private management.
Such endogeneity problems are however not possible to control in a DEA model. Moreover,
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endogeneity requires good instruments that do not impact the dependent variable. Our
three-stage approach allows us to include sufficient fixed-effects that can explain differ-
ences in performance and to correct for them. Our environmental variables are proxies for
cost-shifting variables and should be considered as fixed-effects rather than instruments
for a selection equation. Moreover, our specification does not include the management
form as a dependent variable in the second-stage. Including such a variable puts all the
utilities in the situation as if they were privately managed, which makes the comparison
between public and private management performance impossible. A way to control for
this endogeneity issue would have been to observe water public services for several years
and to assess the dynamic efficiency of public and private management. Our dataset does
not allow us to make such a study.

7 Conclusion
This article provides an efficiency analysis of 177 French water utilities for 2009. In order to
dissociate managerial efficiencies from bad luck and structural differences across utilities,
we employed an outliers detection and a three-stage DEA approach. While the first-stage
DEA would conclude on a large advantage of public management, leveling the playing
field leads to lower differences in efficiency between public and private management. The
remaining differences can be divided between managerial inefficiencies, higher margins or
differences in taxation. Overall, we found large differences in efficiency from a DMU to
another, leaving room for potential cost savings or price decreases. The first-stage DEA
gives an average technical efficiency score of 0.754 with the lowest score at 0.373. After
controlling for contextual variables and statistical noise, technical efficiency scores range
from 0.496 to 1 with an average of 0.841. Public management scores on average 0.883 while
private management scores 0.823 in the last stage while the gap was 10% in the first-stage.

We can discuss the results regarding some missing information about public and pri-
vate management. A study by the Boston Consulting Group [2007] for example shows that
private management faces higher costs than public management because of differences in
tax-burdens. As a matter of fact, the cost of labor is higher under private management
and private DMUs have to pay several local taxes. This can lead to a 9.5% fiscal overload
charged to the private DMUs. Such an overload, regarding our previous results of a 6%
gap means that private firms are, everything else being equal, more cost-efficient or oper-
ate with lower margins, a result that is discussed in Porcher [2012]. Other explanations
for this 6% efficiency gap can be related to different strategies towards water conservation
and to differences in the water budget debt between public and private management.

Resource management and conservation is also an important issue. In the traditional
consumer behavior approach, higher prices can lead to a decreasing consumption. In this
perspective, managers can be tempted to increase fees or to apply progressive tariffs in
order to ensure resource protection. Such an hypothesis is plausible as non-price demand
management programs can be costly to implement, to monitor and to enforce. Such
conservation programs based on non-price mechanisms are moreover difficult to evaluate
ex ante and to estimate ex post. Our dataset does not allow us to investigate whether
progressive tariffs are implemented by operators. The strategy of private operators to
ensure resource management can thus be linked to progressive tariffs that foster higher
revenues. As the price-elasticity of water consumption is rather low (see Porcher [2012] for
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a discussion), increased tariffs automatically lead to increased revenues. When costs are
marked-up, a distortion arise and it is then necessary to compare the current distortion to
the costs of non-conservation or the welfare effects of constrained consumption for house-
holds. Such estimates are not available in France but could be the focus of further studies.

Because of missing information, we were able to collect water budget debt for only
117 DMUs, 52 under public management and 65 under private management. However,
a simple means comparison is useful to understand the technical efficiency gap between
public and private management. For utilities that provide water in-house, the water
budget debt is 7,211,440 euros while it is 5,812,337 euros in municipalities under private
management. There are at least two reasons for this gap between public and private
management. The first reason is that private managers fund a part of their investments
through the price setting while public managers may directly use the municipal water
debt. As a result, water budget debt is expected to be lower under private management.
The second reason is that debt refunding is partly linked to the life-cycle of the contract
as shared investment programs are launched for a given number of years. One can expect
a municipality to engage in a faster debt refunding when the water supply is contracted
out, perhaps because its refunding rates follow the duration of the investment program,
itself anchored on the duration of the contract. Assume that directly managed DMUs
had to converge to the level of debt of privately managed DMUs, then we could expect
that directly managed utilities would increase their revenues everything else being equal.
Such an increase would lead on average to lower technical efficiency of public management
regarding private management. Future research could focus on the importance of public
finance.
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Appendices
7.1 Graphical Analysis: Outliers Detection

Figure 1: Outliers Detection

Note: Outliers are defined as DMUs that push up the efficiency frontier. As
one can see, outliers are here A and B, not only because they are often used
as peers but also because their weights are important in the definition of the
frontier.
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7.2 Graphical Analysis: Efficiency and the Size of the Mar-
ket

Figure 2: Efficiency and Size of the Market
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7.3 Comparison between the nationally representative dataset
and our dataset

Table 5: Comparison of IFEN-SOeS with OSEA
IFEN Dataset

Variable Public Management Private Management Mean
Share 22% 78% -

Price of the 120 cubic meters bill 140.88 176.41 170.29
Observations 137 479 -

OSEA Dataset
Share 30.5% 69.5% -

Price of the 120 cubic meters bill 141.83 174.12 164.21
Observations 54 123 -
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